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ABSTRACT

The paper proposes a Bayesian 3D ultrasound reconstruc-
tion/estimation from non-uniform ultrasound observations,
non-Gaussian data fidelity term, and fotal variation (TV)
based prior. To compute the maximum a posteriori (MAP)
solution, we introduce a Generalized Expectation Maximiza-
tion (GEM) algorithm, which converges to the exact MAP
solution in the case of convex data fidelity term. A set of
experiments illustrates the effectiveness of the method.

1. INTRODUCTION

Three dimensional (3D) ultrasound aims at reconstructing
3D regions of the human body from a set of non-parallel
cross sections degraded by multiplicative noise [1]. Most
3D ultrasound reconstruction methods adopt heuristic inter-
polation techniques aiming at real time operation in interac-
tive medical diagnosis (see, e.g., [2]).

12 norm has been extensively used to regularize the re-
constructed solution, as it leads to a linear set of equations,
provided that the data is Gaussian. However, this norm
tends to oversmooth the transitions between regions. This
problem has been attacked using discontinuity-preserving
priors (regularization terms) under the Bayesian (regular-
ization) framework [5], [3],[4]

This paper proposes a new Bayesian approach to the re-
construction of 3D volumes from ultrasound data, where the
prior on the function to be reconstructed, F' = {f1, ..., fn }7,
is defined as

p(F) = %e_az“’*‘”e“fp M, (1

where A denotes the set of adjacentnodes in P = {1,2, ..., N},

Z is a normalizing constant, and a > 0 controls the prior
strength. The term TV = > 0 ven [fp — fol is the so-
called Total Variation of F' [6]. Abrupt variations on f; are
less penalized by TV than by /2 norm. Therefore, disconti-
nuities are better preserved by using the former prior.
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TV based reconstruction usually leads to a set of non-
linear equations, even in the case of Gaussian observation
models. Herein, we overcome this difficulty by designing
an iterative Generalized Expectation Maximization (GEM)
algorithm inspired by the methodology developed in [9].

The paper is organized as follows. Section 2 formulates
the problem. Section 3 addresses the optimization proce-
dures, and section 4 presents experimental results.

2. PROBLEM FORMULATION

Let f : R" — R be a function to be estimated from a
set of M noisy observations, y;, acquired at correspondent
locations z;, 1 < ¢ < M. The specification of the sampling
coordinates allows to deal with a wide range of problems,
such as 3D ultrasound where an unknown 3D function is
estimated from non-uniform sampled data.

2.1. Function representation

It is assumed that f(x) belongs to a finite dimension linear
space, being represented as a linear combination of basis
functions ¢;(x), i.e.,

N
fl@) =" fipi(x) = ®(2)TF, )
i=1

where ®(z) = {¢1(z), ¢2(x), ..., pn (z)} T is a N-dimensional

vector containing the basis functions. The basis functions
are shifted versions of a mother function, ¢(x), centered at
the nodes of a regular grid, i.e., ¢;(z) = ¢(x — p;), where
1; s the location of the i-th node.

2.2. Data model

The noisy observations are assumed to be independent. Two
models for the noise are considered: 1) white additive Gaus-
sian and 2) white multiplicative Rayleigh. The statistical
independence may not be realistic in some cases. However,
it is a convenient hypothesis because it simplifies a lot the



expressions and their inclusion in the mathematical formu-
lation may not lead to relevant improvement on the final
solution, as noted in [7]. Finally, it is assumed that the lo-
cations x; are accurately known. Therefore, the acquisition
process, in the case of the additive model (the multiplicative
model is considered later in Section 3), can be formulated
as

yi = f(@i) + mi, 3)
where p(n;) = N(0,0?). In vector notation, we have
Y =UF +T, “

withY = {y;}, ¥ = {®(z1), ®(22), ..., ®(xn)}7T beingan
M x N matrix, and T' = {ny,n2, ..., nar }© a column vector
of dimension M.

The log-likelihood function is therefore

M
I(F) = log al(ydxi,fi)] &)
i=1
1 & )
= C- 552 - [f (i) — yil (6)
1
= C—oSlIwWF-Y[;, @

where C is a constant.

2.3. Prior density

Let us define the matrix © such that A = OF, where A
is a column vector containing all differences f, — f,, for
{p,q} € N. The prior (1) is then given by

1 1
p(F) = Ze—a“Alll = Ee—allanl_

2.4. MAP solution
The MAP estimation of F' is

F = argmax[L(F)], ®)
where
L(F) = log [p(Y|F)] + log [p(F)] + C, ©)
with C being a constant. Therefore,
L(F) = 5 5| WF VI3 ~al®Fl,.  (10)

The MAP estimate is then given by

~

F= arg max [L(F)] (11)

3. OPTIMIZATION

The huge dimension of F' (F is defined on a 3D grid) and
the mixture of the /; and l; norms make the optimization
of (11) very hard from the computational point of view. To
overcome this difficulty, we propose an EM scheme. The
EM algorithm [8] yields a non-decreasing log-posteriori se-
quence, {L(F;),t = 0,1,...}, where {F;,t = 0,1,...} is
generated by the two following step iteration:

1. E-step: - Q(F, F;) = Ellogp(Y, Z, F)|Y, F]
2. M-step: - F = argmaxp {Q(F, F})}.

The random vector Z is the so-called missing data. Herein,
we follow the ideas presented in [9] where Z = {z;} plays
the role of a scale factor in a Gaussian decomposition of the
prior. More specifically, from (8) we see that the compo-
nents of the random vector A = {§;} are independent and
Laplacian distributed. This density admits the decomposi-
tion (see, e.g., [9])

p(6i) = B, [p(di]2:)], (12)

where p(8;]2;) = N(0, z;) and p(z;) = ae™ %, for z; > 0.
With this setting, and following [9] we obtain:

1 1
F F)=—-——|vF-Y|?-=ATD,A 13
QF.F) =~ - 3ATDA, (3
where D; = {d(6;;)} (see footnote!), d(§) = —(jpl—a)d’;—;) =
al§|7t, and
FL, =970 +0%°0"D,0) 10Ty, (14)

The maximization of (13) amounts therefore to solve a
quadratic problem.

3.1. Implementation

The solution of equation (14) is obtained by inverting an
huge matrix, which is unpractical. To circumvent this diffi-
culty, we use the Gauss Seidel algorithm, which optimizes
(13) with respect to only an unknown at a time, keeping the
remaining variables constant. This approach leads to the
following recursion

1 B
ferni = W Z (fe(x;) — yj] di(x;) + fra (15)
t jes;
- 1
fa = 3 > wiigfig (16)
! qeV;
Wi = Y wig (17)
qEV;

IThe notation (-)4; stands for the tth time instant for the 5th component.



where wyiy = | fri — figl ™', g € V; is the set of adjacent
nodes of node 7 and S; is the set of sampling locations such
that ¢;(x;) # 0. The parameter o was incorporated in the
parameter .

Notice that each component-wise optimization does not
decrease the objective function (13). Therefore, after a full
updating of F', we have Q(Fy41, F;) > Q(F}, Ft). The ob-
tained scheme is thus a Generalized Expectation Maximiza-
tion (GEM) algorithm, assuring therefore that the sequence
{L(F}),t =0,1,...} is still non-decreasing.

Observation densities other than Gaussian can be dealt
with by using a similar approach. For the case of ultra-
sound data, the observation density is well degcribed by a

Rayleigh distribution [10], i.e., p(y) = %e_g_f. Equation
(13) is therefore
M

QUF,F) ==Y [log(‘I’F)i T ]

i=1

- %ATDtA.

(18)
where (U F); is the ith element of the vector ¥ F'. Its maxi-
mization with respect to component ¢ leads to

1 2 —2fy(x;
fa+ni = ST Z [M bi(x;)

+7i 19
sl fiw) fu (9

4. EXPERIMENTAL RESULTS

In this section we present three examples of application us-
ing synthetic and real data. In the synthetic case we use 1D
data corrupted with white additive Gaussian noise. In the
real case, ultrasound data is used. In this latter example, the
noise is assumed to be Rayleigh distributed.

4.1. Denoising - Synthetic 1D data

In this first experiment we have generated a vector F' with
dimension N = 250 corresponding to a rectangular shaped
function having the values Fj;qp, = 128 and Fjo,, = —128.
The observations are simulated by adding F' with additive
white noise (0, 30%). To compare the results of using TV
and [ priors, we have computed the signal to noise ratio
(SNR) of the estimats obtained with different values of «,
for both priors. The results are displayed in Fig.1. The SNR
is maximum at & = 0.75 and o = 0.001 for TV and [,
priors, respectively. The reconstructions using both priors
and the respective values of « are displayed in Fig.2. The
best SNR of the reconstruction using the [y prior is higher
(24.4dB) than the best obtained using the [, prior (16.9dB).

4.2. Denoising - 2D ultrasound image of the Heart

In this section we present an example of using an ultrasound
image of the heart, i.e., a 2D problem. Fig.3.a) displays
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Fig. 1. SN R(«) of the reconstructions with synthetic data,
obtained using the TV (thick line) and [, (thin line) based
priors. 256 observations of a rectangular shaped function
(=128 < f(x) < 128) corrupted by additive Gaussian
noise, N'(0, 30%).
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Fig. 2. Denoising results using TV (thick line) and [/, (thin
line) priors. 256 observations of the rectangular shaped
function (—128 < f(x) < 128) corrupted by additive Gaus-
sian noise, N (0, 30).

an ultrasound image representing a cross section of a heart,
where three chambers are visible. Fig’s. a displays the orig-
inal ultrasound image and Fig. b-d) and Fig. e-g) display the
denoising results using the [, and TV based priors, respec-
tively for a = 1,10,100. As expected the results of using
the TV prior leads to sharper solutions where the transitions
appear better defined. Notice that TV reconstructions ex-
hibit smaller sensitivity to the  then Iy ones. This behavior
can also be observed in Fig. 1 of 1D example.

4.3. Reconstruction - 3D Ultrasound (Gall Bladder)

In this last example we present the reconstruction results us-
ing the TV and [y priors. The observations are formed by
50 non-parallel ultrasound cross sections of a gall-bladder.
These images were acquired by a conventional medical ul-
trasound equipment, to which an electromagnetic spatial lo-
cator was attached. This spatial locator gives the position



Fig. 3. Denoising of a heart ultrasound image. a)Ultrasound
image. b-d)l prior. e-g)TV prior for alpha = 1,10, 100.

and orientation of the ultrasound probe, allowing the com-
putation of the 3D position of each pixel on the ultrasound
image. These positions and intensities are used with the
Rayleigh distribution to compute the MAP estimates of the
gall bladder anatomy.

The results are displayed in Fig.4. Column I shows three
ultrasound images taken from the sequence and columns
II and III show the correspondent cross sections extracted
from the estimated volumes using l» and TV priors, respec-
tively. Row d) shows new cross sections (with no corre-
spondence on the original sequence) extracted from the re-
constructed volumes embracing the whole organ. In the last
row two surfaces, representing the organ border, are dis-
played. These two surfaces were obtained from the recon-
structed volumes using both priors. As expected, TV prior
leads to a better defined reconstructed organ, with sharper
transitions.

5. CONCLUSIONS

This paper introduced a new Bayesian criterion to 3D ultra-
sound reconstruction. The prior, based on the Total Vari-
ation of the reconstructed function, is of edge-preserving
type, a crucial goal in medical imaging. The MAP estimate
is a complex optimization task, owing to the presence of
Rayleigh density and TV prior. To overcame this difficulty,
a GEM algorithm was designed, where each iteration solves
a simple 1D optimization. The effectiveness of the method
was illustrated by using synthetic and real data.
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