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Abstract. The estimation of a scalar function f using a regular grid has
been extensively used in image analysis. This amounts to approximate f
by a linear combination of known basis functions. However, this approach
is usually not efficient. This paper proposes a more efficient algorithm,
based on the use of a non regular grid, which achieves better accuracy
with less basis functions. Experimental results are provided to illustrate
the performance of the proposed technique.

1 Introduction

The representation of continuous functions using linear interpolation of a given
set of basis functions is a common procedure in several areas [1–3]. Non-uniform
grids are used in a large number of applications, e.g., finite elements mathemat-
ics, image format conversion, surface representation in computer graphics and
curve re-sampling. Usually these non uniform sampled problems are converted
to uniform sampled problems by re-sampling the data. For instance [6] presentes
an algorithm to re-sample data between arbitrary grids using an intermediary
rectangular regular grid.

This procedure can be performed by using some optimality criterion, e.g. least
squares reconstruction (LSR) error [4, 5] . The main problem in these conversion
operations is the representation error introduced when a given continuous or
discrete function is represented using a different set of basis functions.

In this paper we will adopt a different strategy: instead of converting a non
regular grid problem into a regular one we will start with a regular grid and
change its geometry in order to minimize a given energy function.

We aim to represent a continuous function, f(x), estimated from noisy ob-
servations at non uniform positions xi. This function is represented as a linear
combination of basis functions which vary during the estimation process. The
proposed method uses the MAP criterion to estimate the coefficients associated
to basis functions and to estimate its positions. This approach allows to estimate
the basis functions as well as its coefficients.
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2 Problem Formulation

Let f(x) be a scalar function and V = {(yi, xi)} a set of M observations, where
yi are noisy observations of f(x) taken at locations xi. The goal is the estimation
of f(x) from the data V , by minimizing an energy function.
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Fig. 1. Function representation with a non regular grid.

2.1 f(x) definition

It is assumed that the f(x) belongs to a class of admissible functions defined in
an interval Ω ⊂ R, i.e., f : Ω −→ R. Furthermore, it is assumed that the set
of admissible functions is a finite dimension vector space F with unknown basis
function, φi : Ω −→ R, belonging to a given class of functions. Each function
f ∈ F can be expressed as a linear combination of the basis functions,

f(x) = Φ(x)T U (1)

where Φ(x) = [φ1(x), φ2(x), ..., φN (x)] is a vector of basis functions and U =
[u1, u2, ..., uN ] is a N × 1 vector of coefficients.

Piecewise linear basis functions are used as shown in Fig.1. The shape and
regions of support of the basis function are different depending on the distances
between the µi’s, where the µi parameter is the position of the maximum of
the basis function φi (see Fig. 1). Therefore, the value of f(x) at an arbitrary
location x in the interval [µi, µi+1] is obtained by interpolating the coefficients
ui and ui+1, as follows

f(x) = ui
x− µi−1

µi − µi−1
+ ui+1

µi+1 − x

µi+1 − µi
(2)

All the basis functions are initialized with the same shape and at equally
spaced positions, that is, forming a uniform regular grid, where µi = min(x) +
i ∗ (max(x)−min(x))/(N − 1) with 0 ≤ i ≤ N − 1.



2.2 Observation model

In this paper we assume that the observations are corrupted by Gaussian additive
noise, ηi ∼ N(0, σ2), with zero mean and standard deviation σ, i.e.,

yi = f(xi) + ηi (3)

Assuming that the observations are independent this leads to the log likeli-
hood function

ly = C − 1
2σ2

M∑

j=1

(yj − f(xj))2 (4)

where C = − 1
2 log (2πσ2).

2.3 Prior

The assumption that f(x) is band limited, makes it possible to model the vector
U = {ui} as a Markov Random Field, described by a Gibbs distribution. This
approach introduces correlation between the values of neighboring nodes [7],
which is expected for band limited signals.

Furthermore, in this paper, changes on the shape of the basis functions are
performed. By changing the positions µi’s of the basis functions we will maxi-
mize a given objective function. Constraints should be introduced to avoid the
collapsing of all nodes in a one single point. Therefore, the vector Ξ = {µi} is
also modeled as a Markov Random Field described by Gibbs distribution.

In this paper it will be used first order Markov Random Fields described
by Gibbs distributions [7] with quadratic potential functions with parameters α
and β for the vectors U and Ξ respectively, i.e.,

P (U) =
1

Zu
e−α

PN
i=2 (ui−ui−1)

2
(5)

P (Ξ) =
1

Zµ
e−β

PN
i=2 (µi−µi−1)

2
(6)

where Zu and Zµ are the partition functions associated to P (U) and P (Ξ)
respectively.

The estimation of U and Ξ is performed by using the MAP criterion,

Û = arg max
U

log (P (Y |U,Ξ)P (U)P (Ξ))

Ξ̂ = arg max
Ξ

log (P (Y |U,Ξ)P (U)P (Ξ)) (7)

2.4 Energy

The optimization problem defined by the equations (7) can be solved by mini-
mizing the following energy function

E(U,Ξ) = −ly − lu − lµ (8)
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Fig. 2. Optimization process.

with respect to U and with respect to Ξ, where lu = log(P (U)) and lµ =
log(P (Ξ)). Replacing ly, lu and lµ we obtain

E(U,Ξ) = C +
1

2σ2

M∑

j=1

(yj − f(xj))2 −

N∑

i=1

(α(ui − ui−1)2 + β(µi − µi−1)2) (9)

3 Optimization

The minimization of (9) is performed based on two steps: 1)optimization with
respect to U and 2)optimization with respect to Ξ, as displayed in Fig.2. These
two steps alternate during the iterative process until the convergence is achieved.
In each step, the optimization is performed by using the ICM algorithm [8],
where the energy function is minimized with respect to each unknown, keeping
all the other constant. Ξ is initialized with a regular grid in Ω where µ1 = xmin

and µN = xmax. Concerning the coefficients U , they are first initialized with a
constant value, the mean of {yi}.

The minimization of E(U,Ξ1) with respect to the parameters is performed
by finding its stationary point with respect to ui and µi, i.e., by solving the
following equations

∂E(U,Ξ)
∂ui

= 0

∂E(U,Ξ)
∂µi

= 0
(10)

Using the fixed point algorithm we obtain

un+1
i =

1
2ασ2

M∑

j=1

(yj − f(xj))φi(xj) + ūi

µn+1
i =

1
2βσ2

M∑

j=1

(f(xj)− yj)
df(xj)
dµi

+ µ̄i

(11)



where ui = (ui−1 + ui+1)/2, µi = (µi−1 + µi+1)/2 and

df(x)
dµi

=





(ui−1−ui)(x−µi−1)
(µi−µi−1)2

µi−1 < x ≤ µi

(ui−ui+1)(µi+1−x)
(µi+1−µi)2

µi < x ≤ µi+1

0 otherwise

During the optimization process µ1 and µN , are not updated, preventing the
collapse of the nodes into a single position. In fact, it is important to note that
the prior associated to Ξ favors the approximation of the nodes due to the use
of quadratic distances between consecutive node positions.
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Fig. 3. Experiment with synthetic data. a)Original function and the observations.
b)Estimated functions with the RGMAP (*) and NRGMAP (o). c)Node locations.
d)Energy function.



4 Experimental results

In this sections we will present experiments using synthetic data and real data.
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Fig. 4. Monte Carlo tests. Mean and standard deviation of the SNR obtained with 40
experiments for each number of nodes between N=11 and N=111.

4.1 Synthetic data

The first experiment considers synthetic data. We have generated a set of 1000
points uniformly distributed in the interval [−1, 1]. The function f(x), to be
estimated, is a a step function with transition at x = 0. The observations, yi,
obtained at locations xi are corrupted with additive Gaussian noise, with zero
mean and standard deviation σ = 0.2 (see Fig.3.a)). The function f(x) is defined
using a linear combination of 11 basis functions.

The locations of the nodes associated to the basis functions are initialized as
a regular grid, i.e., they are equally separated in the interval [−1, 1]. In a first
experiment we have estimated only the coefficients ui of the basis functions. In
a second step we have jointly estimated the coefficients and the corresponding
locations. Figs.3.b-d) show the results. Fig.3.b) shows the original function f(x),
the estimated function using the regular grid based MAP method (RGMAP),
marked with asterisks, and the estimated function using the non regular grid
based MAP method (NRGMAP), marked with circles. Fig.3.c) shows the final
positions of the nodes for both methods, and Fig.3.d) shows the evolution of the
energy function along the iterative process of estimation.



The NRGMAP method achieves lower values for the energy function (ENRGMAP =
1190, ERGMAP = 1314) and the nodes tend to concentrate at the transitions,
as expected. The final result is clearly better.
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Fig. 5. Estimation of MRI profile: a) MRI image. b)Observations. c)Estimated func-
tions. d)Node positions.

4.2 Monte Carlo tests

We have performed monte carlo tests, with the parameters used in the previous
experiment, but with different number of nodes, starting with N = 11 and ending
with N = 111. For each number of nodes we have performed 40 experiments and
for each one we have computed the signal to noise ratio of the estimated function
using both methods. The mean and standard deviation of the SNRs obtained
in the 40 experiments were computed and the results are displayed in the Fig.4.
These results show that the NRGMAP method always works better leading to a
gain of approximated 2dB. This gain, however, decreases as the number of nodes
increases, because when the number of nodes is large, the function is already well
represented with a regular grid. The adjustments on the node positions, in this
case, do not leads to relevant improvements in the representation of f(x).



4.3 Real data

In a second experiment we show a 1D profile obtained from a MRI image of the
brain (see Fig.5.a)). We have used this profile to estimated a scalar function de-
scribing the anatomy along the profile, using 31 basis functions. The results are
displayed in Fig.5. Once again, lower values of the energy function are achieved
using the NRGMAP method, meaning a function that better represents the ob-
servations, and the nodes tend to approximate in the regions where the function
to be estimated presents faster variations.

5 Conclusions

In this paper we have presented an algorithm to estimate a function from noisy
observations sampled at arbitrary positions in a given interval. The function is
described as a linear combination of a finite number of basis functions where the
corresponding locations are optimized using the MAP criterion. We have shown
that this strategy of jointly estimating the coefficients and corresponding posi-
tions leads to better results than estimating only the coefficients of the linear
combination. Our goal is to apply this strategy to higher order problem by de-
forming 2D or 3D grids in order to obtain better representation of the estimated
function with the small number of nodes as possible.
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