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Abstract—In this study, a Bayesian approach was used for 3-D reconstruction in the presence of multiplicative
noise and nonlinear compression of the ultrasound (US) data. Ultrasound images are often considered as being
corrupted by multiplicative noise (speckle). Several statistical models have been developed to represent the US
data. However, commercial US equipment performs a nonlinear image compression that reduces the dynamic
range of the US signal for visualization purposes. This operation changes the distribution of the image pixels,
preventing a straightforward application of the models. In this paper, the nonlinear compression is explicitly
modeled and considered in the reconstruction process, where the speckle noise present in the radio frequency
(RF) US data is modeled with a Rayleigh distribution. The results obtained by considering the compression of the
US data are then compared with those obtained assuming no compression. It is shown that the estimation
performed using the nonlinear log-compression model leads to better results than those obtained with the
Rayleigh reconstruction method. The proposed algorithm is tested with synthetic and real data and the results
are discussed. The results have shown an improvement in the reconstruction results when the compression
operation is included in the image formation model, leading to sharper images with enhanced anatomical details.
(E-mail: jmrs@alfa.ist.utl.pt) © 2003 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Most reconstruction algorithms that have been used in
3-D ultrasound (Nelson et al. 1999; Quistgaard 1997) are
simple and fast. They aim to minimize the reconstruction
time (Rohling et al. 1999a). Bayesian approaches (Her-
man and Kuba 1999; Katsaggelos 1991) have been
avoided because they are computationally demanding in
terms of CPU time and memory requirements. However,
the recent evolution of digital computers opens new
opportunities for the use of sophisticated estimation
methods.

In this paper, the reconstruction of a 3-D data vol-
ume from noisy and compressed ultrasound (US) images
is addressed. A freehand US probe is used to obtain a
sequence of US images, corresponding to cross-sections
of the organ to be inspected (see Fig. 1). A spatial locator
is used to measure the position of the US probe. Each
image is then preprocessed by the US equipment and is
usually the only output of the US equipment. The radio-

frequency (RF) image is not provided by the equipment
and, therefore, is not available for processing. The main
goal of 3-D US is the reconstruction of the original
volume from this set of compressed US images.

Several statistical models have been proposed in the
literature to model the multiplicative noise (speckle)
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Fig. 1. Block diagram of the processing system.
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present in the RF signal provided by the US probe
(Narayanan et al. 1994; Keyes and Tucker 1999). These
models were developed for specific organs and tissues,
according to their physical and acoustic properties. The
Rayleigh distribution (Burckhardt 1978; Abbot and
Thurstone 1979; Wells and Halliwell 1981), used in this
paper, is a common and simple model used to character-
ize the speckle noise affecting the US images of soft
tissues such as liver and kidney (Achim et al. 2001).

However, the signal is usually filtered and com-
pressed during the preprocessing stage. Compression is
used to reduce the dynamic range of the US signal for
visualization purposes. Unfortunately, it also modifies
the probability distribution, as shown in Fig. 2. A de-
tailed knowledge of the preprocessing operation is usu-
ally unavailable, and depends on a set of parameters
defined during the medical examination. These parame-
ters are, for example, the brightness, contrast and zoom,
defined by the medical doctor during the examination to
improve the visualization of a given area or organ.
Therefore, the Rayleigh distribution suggested by phys-
ics becomes inappropriate, hampering the performance
of the reconstruction procedure. To avoid this difficulty,
the RF signal (i.e., the signal before preprocessing) is
sometimes used in some works (Shankar 1986; Hokland
1996; Cramblitt and Parker 1999). However, when the
RF signal is not available, alternative compensation
methods are needed. The effect of nonlinear preprocess-
ing has been considered in the past, in the scope of noise
reduction with median and adaptative filtering (Loupas et
al. 1989; Karaman et al. 1995; Dutt 1996) and will be
addressed here in the context of 3-D reconstruction.

In this paper, the maximum a posteriori (MAP)
criterion (Duda and Hart 1973) is used to estimate a 3-D
function describing the acoustic properties of a given
region from a set of cross-sections. Because the nonlin-
ear operation performed during the preprocessing stage
is unknown, it has to be estimated during the reconstruc-
tion phase. Because realistic models are required to make
the Bayesian algorithm works properly, the preprocess-
ing function should be included in the image formation
model.

A two-step approach is proposed, in which recon-
struction and nonlinearity identification alternate (see
Fig. 3). It is important to note that the improvement in
the visualization obtained in the US equipment by the
log-compression operation is not useful in the context of
Bayesian estimation. In fact, our main concern was to
consider the correct model for the observed data to
improve the performance of the reconstruction algo-
rithm.

This paper extends the work presented by Sanches
and Marques (2000, 2001a, 2001b).

PROBLEM FORMULATION

Consider the experimental setup described in Fig. 1.
Given a set of US images and the output of the spatial
locator, we wish to estimate a function related to the
acoustic impedance in a given volume-of-interest (VOI).
Because the preprocessing operation performed by the
US equipment is unknown, we also wish to identify this
operation to improve the reconstruction results.

Let U be a set of unknown parameters defining the
acoustic properties of the volume and let �, � be the
parameters defining the preprocessing operation (see de-
tails below). Using the MAP estimation method, these
parameters are obtained by:

�Û,�̂,�̂� � arg max
U,�,�

ln� p�Y�U, �, �� p�U� p��, ���,

(1)

where Y denotes the available data (US images � spatial
locator information), p(Y�U) is the sensor model and
p(U), p(�, �) are the priors associated with the volume
coefficients (Ripley 1996) and the nonlinear compres-

Fig. 2. Distribution functions for the Rayleigh model (R) and
Rayleigh compressed model (RC) with � � {10, 20, 30, 40,

50}.

Fig. 3. Block diagram of the reconstruction process.
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sion, respectively.
Because it is not possible to optimize the objective

function with respect to all parameters, eqn (1) will be
decomposed into two steps:

Û � arg max
U

ln� p�Y�U, ��, ��� p�U� p��, ��� (2)

��̂, �̂� � arg max
�,�

ln� p�Y�U, ��, ��� p�U� p��, ���,

(3)

that correspond to 1. volume reconstruction and 2. pre-
processing identification (see Fig. 3). In step 1, the �, �
estimates are used to improve the volume reconstruction
results and, in step 2, the reconstruction estimate Û is
used for the identification of the image compression
parameters �, �. Both steps alternate until convergence
is achieved.

The volume description, the data model and the
prior distribution used in this paper are described in the
next three sections.

Volume description
It will be assumed that the function f describing the

volume belongs to a class of admissible functions de-
fined in a spatial domain, � � R3 (i.e., f : � 3 R).
Furthermore, it is assumed that the set of admissible
functions is a finite dimension vector space F with
known basis functions, bi : � 3 R. Each function f � F
can be expressed as a linear combination of the basis
functions, as follows:

f� x� � B� x�TU (4)

where B(x) � [b1(x), b2(x), . . . , bN(x)] is a N � 1 vector
of basis functions and U � [u1, u2, . . . , uN] is a N � 1
vector of coefficients.

It is assumed that each bi(x) is obtained by shifting
a local function h : R 3 R:

bi� x� � h� x � �i�, (5)

where �i � R3 is the ith node of a cubic grid (see Fig. 4)
defined in �. Furthermore, h is a trilinear interpolation
function defined by:

h� x� � ��i�1
3 �1 �

�xi�

	 � x � �

0 otherwise
, (6)

where xi is the ith coordinate of x, 	 is the grid step and

� � [
	, 	]3.
The grid defines a partition of � into cubic voxels.

It is concluded from eqns (5 and 6) that each basis
function bi has a finite support of eight voxels and,
therefore, each 3-D point belongs to eight support re-
gions. To compute f(x0), defined in eqn (4), only eight
coefficients are needed because all the other basis func-
tions are zero at x � x0.

Data model
The data used to estimate f consist of a sequence of

US images complemented with trajectory (position and
orientation) of the US sensor during the medical exam-
ination. This information allows us to compute a set of
data points, V � {vi}, containing geometric and intensity
information (i.e., vi � (zi, xi) where zi is the intensity of
the pixel located at the position xi � R3.

The signal Y generated by the ultrasound probe is a
N � M matrix. It is assumed that Y is a set of i.i.d.
(independent and identically distributed) random vari-
ables with Rayleigh distribution (Burckhardt 1978; Ab-
bot and Thurstone 1979),

p� yi� �
yi

f� xi�
e


yi
2

2f � xi�, (7)

where yi denotes the amplitude of ith pixel of the non-
compressed image and f (xi) is the value of the function
f computed at position xi.

Let Z be the output of the preprocessing block (see

Fig. 4. 3-D cubic grid.
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Fig. 1). Statistical independence of all elements of Z is
assumed (Dias and Leitao 1996). This assumption is not
usually realistic because the PSF (point spread function)
of the image-acquisition system is, in general, larger than
the interpixel distance. However, it is not easy to esti-
mate the PSF of the acquisition system. This function
depends not only on the impulsive response of the US
probe and the associated electronics but, also, on the
image processing performed by US equipment. In par-
ticular, the filtering procedure that smoothes the original
raw data by converting the polar structure of the RF
signal in the rectangular structure of the observed US
images introduces correlation among the pixels that is
difficult to model. Furthermore, the improvement
achieved in the reconstruction results by considering the
statistical dependence among the pixels of the image is
not relevant when compared with the computational
complexity introduced in the algorithm, as noted by
Rignot and Chelappa (1992).

In this paper, a log-compression law is considered:

zi � h� yi� � � log� yi � 1� � �, (8)

where (�, �) are unknown coefficients. Therefore, the
distribution of z is given by:

p� zi� � �d y

dz
� p� yi�, (9)

where p(y) is the density function of the noncompressed
US image and dy/dz is the derivative of the inverse
compression function. Using eqns (7 and 9) leads to the
new model for the image formation process:

p� zi/U� �
wi�wi � 1�

�f� xi�
e


wi
2

2f� xi� , (10)

where

wi � e
zi
�

� � 1, (11)

and (�, �) are the unknown parameters of the compres-
sion law to be estimated. The reconstructions using this
new model (RC, Rayleigh compressed) are compared
with the Rayleigh model (R) in the section on Experi-
mental Results.

The log likelihood function for this problem is thus
defined by:

l�U, �, �� � �
i
� log �wi�wi � 1�

f� xi�� � �
wi

2

2f� xi�
� . (12)

Prior model
Three dimensional US involves the interpolation of

measured data between the inspection planes, as well as
the ability to perform data fusion and noise reduction.
Some assumptions must be made to interpolate the data.
This information is included in the prior distribution. In
this work, a Gibbs prior is used, based on a set of
quadratic potential functions (Geman and Geman 1984).
These functions are used to guarantee the smoothness of
the spatial coefficients. They introduce a regularization
effect that allows us to recover the unknown coefficients,
even when no data are observed in a given region. In
addition, regularization also improves the convergence
of the optimization algorithm. The choice of a Gibbs
distribution is equivalent to considering U as a Markov
random field, as stated by the Hammersley–Clifford the-
orem (Marques 1999). The prior distribution adopted in
this paper is:

p�U� � Ce
� �g�� �j�1
3 �ug � ug j�

2, by p�U�

� Ce
� 
g��
j�1
3 �ug
ug j�2

(13)

where � is the set of all grid indices of the 3-D cubic
grid, ugj is the jth neighbor of ug, as shown in Fig. 5, and
C is a normalization factor.

The 	 parameter measures the strength of the con-
nections among neighboring nodes. High values of 	
correspond to strongly connected neighbors (differences
receive a high penalty) and low values of 	 correspond to
weak connections. It is often convenient to assume that 	
varies during the optimization process, starting with a
high value that is gradually reduced (Figueiredo and
Leitao 1993). In this paper, the parameter 	 is defined
manually. The best choice is obtained by trial and error
(i.e., by testing a set of values and selecting the one that
leads to better results).

Fig. 5. Neighbor system.
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PARAMETER ESTIMATION

The estimation of the U coefficients is performed by
the MAP method, leading to the maximization of the
joint density function p(Z, U, �, �). This is a difficult
problem because the number of parameters to estimate is
very large (typically, thousands of coefficients) and p(Z,
U, �, �) is a nonconvex function (Li 1998). Simpler
expressions are obtained by using g(U, �, �) � log p(Z,
U, �, �), leading to:1

g�U, �, �� � �
i

� log�wi �wi � 1�

f� xi�� � �
wi

2

2f� xi�
�

� 	 �
g��

�
j�1

3

�ug � ug j�
2. (14)

However, the key difficulties that were described above
remain the same. One way to maximize g is by finding a
stationary point of eqn (14) with respect to each un-
known variable. This topic will be addressed in the next
sections.

Volume reconstruction
In this paper, each component up of U is sequen-

tially updated by the ICM (iterated conditional modes)
algorithm proposed by Besag (1986). In this algorithm,
for each iteration, all the unknown variables are sequen-
tially estimated considering eqn (14) as an unidimen-
sional function of up. A unidimensional version of the
Newton–Raphson method (Press et al. 1994) is used to
solve:





�up�
g�up� � 0, (15)

leading to

n�1ûp � nûp

� �

0.5 �
i

wi
2 � 2f� xi�

f 2� xi�
bp� xi� � 2	Nv�up � u� p�

�
i

wi
2 � f� xi�

f 3� xi�
bp

2� xi� � 2	Nv

(16)

with

u� p �
1

Nv
�

ug��p

ug, (17)

where nu�p is the estimate of up obtained at the nth
iteration, Nv is the number of control points inside the
neighborhood �p of the pth grid node p(Nv � 6) and � is
a gain.

To implement the reconstruction algorithm using
the Rayleigh model, eqn (16) can be used by making wi

� zi.

Nonlinearity estimation
To estimate (�, �), a bidimensional version of the

Newton–Raphson algorithm is used, that is:

�n�1�̂, n�1�̂� � �n�̂, n�̂� � �g�Û, n�̂, n�̂� H
1 (18)

where �g (U, �0, �0) is the gradient vector and H is the
Hessian matrix with respect to �, �. Equation (18) can be
rewritten as follows:

n�1�̂ � n�̂�1 � ��

g�g�� � g�g��

g��g�� � g��
2 � (19)

n�1�̂ � n�̂�1 � ��

g�g�� � g�g��

g��g�� � g��
2 , (20)

where

g� �
1

�
�

i
�Ai log�wi � 1� � 1� (21)

g� �
1

�
�

i
Ai (22)

g�� � �
1

�2 �
i

�2 Ai log�wi � 1�

� Bi log2�wi � 1� � 1� (23)

g�� � �
1

�2 �
i

Bi (24)

g�� � �
1

�2 �
i

�Ai � Bi log�wi � 1�� (25)

Ai �
wi

3 � wi
2 � 2f� xi�wi � f� xi�

f� xi�wi
(26)1The constant C was discarded because it does not contribute to the

solution.
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Bi �
2wi

3 � wi
2 � f� xi�

f� xi�wi
2 �wi � 1�, (27)

and ��, �� are update gains.
It should be stressed that the estimation of (�, �)

requires an estimate of the volume coefficients, Û. The
converse is also true. Volume reconstruction assumes
that (�, �) estimates are available. Improved � and �
estimates allow us to achieve improved volume recon-
struction and vice versa. This suggests a recursive pro-
cedure in which both steps alternate.

Figure 6 shows the dependence of the likelihood
function on (�, �) parameters. The log-likelihood pro-
files associated with the global maximum are also shown.
The maximum is achieved near the true values of the
parameters: � � � � 20. This image shows a flat surface
with a nonpronounced maximum, which leads to diffi-
culties in the estimation of accurate solutions. On the
other hand, this means that the reconstructed volumes are
not sensitive to the estimated preprocessing parameters
(�, �).

One of the synthetic images used in this example is
shown in Fig. 7a, which displays the original image, with
random Rayleigh-distributed pixels. The histogram of
the pixel intensity is shown below.

Figure 7b shows the log-compressed image ob-

tained by applying the nonlinear transformation eqn (8)
to the pixels of the original image with parameters � �
� � 20. The histogram is no longer Rayleigh, as shown
below. Finally, Fig. 7c shows the estimated image using
the log-compressed model. It is concluded that the esti-
mated image is similar to the original image, with both
histograms almost identical, as expected, showing the
ability of the algorithm to recover the original data.

During the estimation process, the parameter esti-
mates must be monitored to avoid values with no phys-
ical meaning. Two cases should be considered. Volume
coefficients should be greater than zero. In addition, the
Rayleigh distribution has a singularity for zero values of
the parameter f. Therefore, the reconstructed volume
must be strictly positive. The second problem concerns
the offset constant, �0: � must always be smaller than
min(z). Otherwise:

wi � e
z i
�

� � 1 (28)

would take nonpositive values, which is not possible.

Initialization procedure
Equations (2) and (3) define a recursive algorithm to

update the volume and preprocessing estimates. How-
ever, the algorithm must be initialized with reasonable
estimates of these parameters. In fact, the optimization
results and convergence rate depend on this initial guess.
In this section, expressions for the initial estimates are
derived.

A different compression model will be considered
for convenience; compare with eqn (8):

z � � log� y� � �. (29)

Assuming that y is a random variable with Rayleigh
distribution, p(z) becomes a Fisher–Tippet distribution,
also known as double exponential distribution (see Ap-
pendix A for details) (Abramowitz and Stegan 1972;
Dutt 1996).

p� zi/U� �
wi

2

�f� xi�
e


wi
2

2f� xi� (30)

where

wi � e
z i
�

� (31)

As can be verified, this distribution is similar to eqn
(10) for the range of values used in US images (0 
 zi 

255), making it possible to approximate eqn (10) by eqn

Fig. 6. Likelihood surface and profiles; 65535 pixels, Rayleigh-
distributed and log-compressed, with (�, �) � (20, 20).

Fig. 7. Restoration results: Images and histograms; (a) original
(Rayleigh), (b) Observed (compressed), and (c) decompressed.
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(30). The expressions for the mean and SD of this dis-
tribution are (Abramowitz and Stegan 1972):

z� � ��log�2f� x�� � ��/ 2 � � (32)

�z � ��/	24 (33)

where � � 0.5772. . . is the Euler–Mascheroni constant.
Based on the above expressions, initial values for

the �, u parameters can be computed as follows:

�̂0 � 	24

�2 �z
2 (34)

and

ûp
0 � 0.5e

2�� z�
min z�

	24�z
2

�� (35)

The parameter � will be initialized by:

�̂0 � min�z). (36)

It was experimentally found that this initialization
usually provides a good estimate of �. In fact, this is an
expected result because min(z) � min(log(y � 1) � �) �
log(min(y) � 1) � � � log(0 � 1) � � � �. However,
this estimator of �0 is biased with a bias depending on
the amount of observed data, as shown in Appendix B.

When the estimation is performed using the Ray-
leigh model without compensation, the only initialization
needed is the one associated with the volume coeffi-
cients. In this case:

up
0 �

2z�2

�
. (37)

This expression was derived from the mean value of
a set with Rayleigh distribution:

z� � 	f�

2
, (38)

where f is the parameter of the Rayleigh distribution.
To assess the performance of the initialization pro-

cedure for �0 and �0, a set of Monte Carlo tests was
performed using uniform synthetic data. A set of 100
images with 128 � 128 pixels corrupted with Rayleigh
noise and compressed with several pairs of parameters
(�, �), was used. For each pair of parameters (�, �), 20
initializations (�0, �0) were computed and their mean
and SD displayed in Fig. 8a and b.

Figure 8a shows the � statistics for several values of
the Rayleigh parameter, f � {500, 1000, 2000, 3000,
4000, 5000}, and the (�, �) pair of parameters. As can be
seen, the estimator of �0 is insensitive to the Rayleigh
parameter (magnitude of the data). However, the SD of
�̂0 grows with the f parameter. Other experiments made
in this context show that �, � estimators are not sensitive
to the parameter �. Figure 8b displays the mean and SD
for �̂0 initial estimates. These results show that there is
noticeable dependence of �̂0 estimates with respect to �,
as is proven in Appendix B. The best results are achieved
for low � values.

EXPERIMENTAL RESULTS

This section presents reconstruction results with
synthetic and real data. Two methods are considered: 1.
the Rayleigh reconstruction algorithm without nonlinear-
ity compensation, eqn (16) with wi � zi, and 2. the
reconstruction algorithm with compensation, eqns (16,
19 and 20). Three problems are considered in this sec-
tion: 1. the reconstruction of synthetic uniform volumes,
2. the reconstruction of synthetic nonuniform volumes
and 3. the reconstruction of medical data. Whenever
possible, statistics are provided to assess the performance
of both reconstruction algorithms in each of these prob-
lems. The reconstruction times depend on the number
and dimensions of the images and on the type of proces-
sor used. All the experiments presented in this paper

Fig. 8. (a) Mean and SD of the initial � estimates and (b) Mean
and SD of the initial � estimates obtained by Monte Carlo tests.
Each simulation was performed using a set of 100 images with

128 � 128 pixels.
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were performed in a Pentium III running at 1 GHz. With
this processor, for instance, each iteration of the recon-
struction algorithm using the thyroid and eyeball se-
quences (100 images with 128 � 128) takes approxi-
mately 30 s to be completed. However, it is possible to
adopt several measures to speed up the reconstruction
time, as shown by Sanches and Marques (2001a, 2001b,
2002a, 2002b).

Uniform volumes
An example earlier was shown with uniform syn-

thetic data (Fig. 7), where it is clear that the proposed
algorithm manages to restore the original distribution of
the data, and estimate parameters of the nonlinear com-
pression law. Here, a more complete set of tests is
presented to characterize the performance of the algo-
rithm.

Figure 9 shows the mean and SD of �̂, �̂ as a
function of the true parameters. These results were ob-
tained with 20 Monte Carlo runs. In each run, the pa-
rameters were estimated using a set of 50 uniform cross-
sections with 128 � 128 pixels. It was experimentally
observed that the MAP estimates are unbiased and that
their SD increases linearly with the parameter �.

Nonuniform volumes
Let us now consider the reconstruction of nonuni-

form volumes. For the sake of simplicity, it is assumed
that the function f(x) to be estimated is binary: it has a
high value inside the object to be reconstructed and a low
value outside. A cube was used in these experiments (see
Fig. 10a).

Several experiments were performed. In each ex-
periment, 50 cross-sections of the object are computed.

The Rayleigh-distributed images, Fig. 10b,A, are com-
pressed by the log-compression law using selected val-
ues for (�, �) parameters, Fig. 10b,B, and used as ob-
servations to perform the volume reconstruction and
estimation of the preprocessing function. Then, the algo-
rithm described in this paper is used simultaneously to
reconstruct the volume and to estimate the (�, �) param-
eters. Figure 10b,C, shows an example of decompressed
image using the inverse of the estimated preprocessing
function. As is shown, the original (Fig. 10b,A) and the
decompressed (Fig. 10b,C) are very similar. The com-
parison of the profiles (Fig 10c,A,C) and the histograms
of the sequences (Fig. 10d,A,C) confirm this similarity.

Table 1 shows the performance of both models for
three different values of � � {1, 10, 50} and for � � 0.
The likelihood function and the SNR are the figures of
merit used for comparison. This table shows a clear

Fig. 9. Mean and SD of (�̂ and �̂) (	 � 1). Results obtained
with 20 Monte Carlo runs with uniform images with log-

compressed Rayleigh distribution.

Fig. 10. Reconstruction/restoration results using a 3-D syn-
thetic cube. Data: set of 50 cross-sections corrupted by Ray-
leigh noise and log-compressed with � � 20, � � 20. (a)
Original object, (b) original Rayleigh cross-section, com-
pressed image used in the reconstruction, image decompressed
with the inverse of the estimated preprocessing function (�̂ �

20.5, �̂ � 19.7). (c) Profiles, (d) histograms.
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improvement in the log-likelihood values, as well in the
SNR for the reconstruction results using the nonlinear
compensation. The estimates of (�, �) parameters ob-
tained in these experiments are close to the original ones.
In fact, excellent results are provided by the Fisher–
Tippet initialization procedure. Figure 11 show profiles
extracted from the estimated volumes for each configu-
ration of the compression law using both models. Fig.
11a, b, c shows the results obtained without compensa-
tion and Fig. 11d shows the estimated profiles using
compensation.

The reconstruction results obtained with nonlinear-
ity estimation, proposed in this paper, are clearly better
than the ones obtained by a straightforward application
of the Rayleigh reconstruction algorithm. It should be
stressed that the estimated volumes obtained with image
compensation are almost invariant with respect to the
values of (�, �) parameters (Fig. 11d). It is important to
note that the estimations with the Rayleigh models
strongly depend on the � parameter (see the vertical

scales on Fig. 11a, b, c). On the contrary, using the
Rayleigh compressed model, all the reconstructions ap-
proximate the original object.

Medical data
The proposed algorithm was used for the recon-

struction of human organs using sequences of US im-
ages. Three examples are considered, corresponding to
the reconstructions of a thyroid, an eye/ball and a gall/
bladder. In the first two cases, 100 images with 128 �
128 pixels were available. In the third case, 62 images
with 176 � 176 pixels were used.

Figures 12–17 show the reconstruction results (im-
ages and profiles) obtained without and with compensa-
tion. Figures 12a, 14a, and 16a show four data images of
the organ considered (thyroid, eyeball and gall bladder)
and intensity profiles along specific lines (see Figs 12b,
14b, 16b).

Figures 13a, d, 15a, d, 17a, d show the correspond-
ing images obtained from the estimated volumes using
the Rayleigh and Rayleigh compressed models, respec-
tively. Figures 13b, c, 15b, c, and 17b, c show the profiles
extracted from the images displayed in (a) and (d), re-
spectively.

The decompressed images generated by filtering the
input images with the inverse of the estimated nonlin-
earity function are also shown in Figs. 12c, 14c, and 16c.

Table 1. Simulation results with synthetic data (cube)

Compensation No compensation

� �

U0 l* � 106
SNR
(dB) U0 l* � 106

SNR
(dB)� �0 �̂ � �0 �̂

1.0 0.99 1.00 0.0 0.0 0.0 2835 
10.8 6.3 10.33 
27.5 
38.0
10.0 9.99 10.04 0.0 0.0 0.0 2835 
40.7 6.3 1032.85 
53.0 3.4
50.0 49.94 50.20 0.0 0.0 0.0 2835 
61.5 6.3 25821.36 
80.4 1.5

*log-likelihood.

Fig. 11. Profiles extracted from estimated volumes using the:
(a) Rayleigh model with � � 1 and � � 0; (b) Rayleigh model
with � � 10 and � � 0; (c) Rayleigh model with � � 50 and
� � 0; (d) Rayleigh compressed model for � � 0, 10, 50 and
� � 0. In this last graph, the vertical bars represent the SD of
the estimation for the several values of the compression

parameters.
Fig. 12. Thyroid: (a) original images; (b) Original profiles; and

(e) Decompressed images.
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The decompression functions estimated during this
experiment are represented in Fig. 18 for the three organs
considered. We have used these functions to generate a
new sequence from the observed ones. Some of these
new images are represented in Figs. 12c, 14c, and 16c.
These images are our estimates of the unobserved RF
signal. The histograms of the compressed (A) and de-
compressed (B) images are shown in Fig. 19. To allow a
visual comparison of the two sequences, the decom-
pressed images were scaled to make equal the variance of
both sequences.

It is concluded that the algorithm presented in this
paper provides a better representation of details with
sharper and well-defined transitions, as shown in Figs.
13, 15, and 17. Figure 13a–b, Fig. 15a–b and Fig. 17a–b
show cross-sections and profiles extracted from the re-
constructed volumes using the Rayleigh model (without
nonlinearity compensation) and Fig. 13c–d, Fig. 15c–d

and Fig. 17c–d show the reconstruction results using the
compensated model.

Table 2 summarizes the estimation results using
medical data. In this table, it is possible to observe that
the likelihood values computed with image compensa-
tion are bigger than the one obtained without compen-
sation. Figure 20 shows the evolution of these values
along the reconstruction process for the three organs
considered. The use of image compensation allows a
significant improvement of convergence rate.

These results, images, profiles and figures of merit
suggest that the model that includes the compression
preprocessing procedure describes better the observed
data and, therefore, is more realistic. With important
practical consequences, is the fact that the anatomical
details, in the estimated volumes using image compen-
sation, are sharper and well defined, which is relevant in
a clinical point of view.

Fig. 13. Thyroid: (a)–(b) Images and profiles extracted from the
reconstructed volume using the Rayleigh model (R); (c)–(d)
images and profiles extracted from the reconstructed volume

using the Rayleigh compressed model (RC).

Fig. 15. Eyeball: (a)–(b) images and profiles extracted from the
reconstructed volume using the Rayleigh model (R); (c)–(d)
images and profiles extracted from the reconstructed volume

using the Rayleigh compressed model (RC).

Fig. 16. Gall bladder: (a) original images; (b) Original profiles;
and (e) decompressed images.

Fig. 14. Eyeball: (a) original images: (b) Original profiles; and
(e) Decompressed images.
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It should be noted that the parameter � does not
change from its initial guess. The justification for this, in
the case of the synthetic data used, is simple. First, we
impose � � 0 and second, � � �0 � min {Z} � 0, as
noted on the Nonlinearity Estimation section. Therefore,
with these data, � cannot increase or decrease from the
initial guess.

In the case of the real data, � can decrease, because
�0 � 0. However, because the distribution of the ob-
served data does not perfectly match the distribution of
the model, the algorithm tries to increase �, which is not
possible (� � �0). Despite this invariance on the �
estimates, it is important to perform its estimation jointly
with � to improve the estimation of this last parameter.

CONCLUSIONS

This paper presents an algorithm to estimate a func-
tion, f(x), describing the acoustic properties of a given
ROI from a set of us images. A Bayesian approach is
used to estimate this function, by assuming that the
position and orientation of the us probe are accurately
known. The log-compression process performed by the
preprocessing stage of the us equipment is explicitly
considered and compensated. The estimation of the log-
compression parameters is simultaneously performed
with the volume reconstruction by optimizing an objec-
tive function (posterior density function of the unknown
parameters).

The optimization process depends on the initializa-
tion of the volume and compensation parameters. An
initialization procedure is derived, approximating the
observation model by a Fisher–Tippett distribution func-
tion that leads to accurate initial estimates for �, �, U.

A set of Monte Carlo tests were performed to eval-
uate the estimates. For each configuration of (�, �), 20
experiments were performed and the mean and SD were
computed. It was found that the estimator is unbiased and
the SD increases with the �.

Examples of application of the algorithm using syn-
thetic and real data are also presented. In the synthetic
case, a set of 50 compressed images, computed from the

Fig. 17. Gall bladder: (a)–(b) images and profiles extracted
from the reconstructed volume using the Rayleigh model (R);
(c)–(d) images and profiles extracted from the reconstructed

volume using the Rayleigh compressed model (RC).

Fig. 18. Estimated decompression functions, y � h
1 (z) (thick
line) and y � z (thin line). (a) Thyroid, (b) eyeball, (c) gall

bladder.
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cross-sections of a cube and corrupted by Rayleigh noise,
is used. The experimental results show that the proposed
algorithm manages to retrieve the log-compression pa-
rameters and to estimate the original object. Further-

more, it is shown that the results obtained by using image
compensation are better than the ones obtained without
compensation and not sensitive to the preprocessing pa-
rameters.

Fig. 20. Evolution of the log-likelihood values with compressed
Rayleigh (CR) model (thick line) and with Rayleigh (R) model
(thin line) for the (a) thyroid, (b) eyeball and (c) gall bladder.

Fig. 19. Histograms of (A) Compressed and (B) Decompressed
images. The decompressed images were scaled to make their
variance equal to the variance of the original sequence. This
procedure is important to allow the visual comparison of the

two sequences.
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The proposed algorithm was also applied for the
reconstruction of human organs. The experimental re-
sults obtained with the proposed algorithm outperform
the ones achieved without compensation: the estimated
images and profiles obtained by compensating the log-
compressed images are sharper, presenting a larger dy-
namic range, and the anatomical details appear more
clear. Furthermore, the figures of merit computed for
these sequences, prove that the compressed model fits the
observed data better than the Rayleigh model. Finally,
and for these real sequences, it was observed an increas-
ing in the convergence rate.
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� �

U0 1* � 106 U0 1* � 106�0 �̂ �0 �̂

Thyroid 53.8 61.4 11.0 11.0 9.3 
5.8 3502 
6.2
Eyeball 84.1 82.5 14.0 14.0 4.8 
5.9 4567 
6.0
Gall bladder 28.2 34.8 28.0 28.0 4.2 
5.6 304 
5.9
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APPENDIX 1

Fisher–Tippett distribution
Consider the random variable (R.V.) y with a Rayleigh distribu-

tion with parameter 	:

p� y� �
y

	
e


y2

2	, (39)

and a log-compression law given by: z � � log y � �. The distri-
bution of z is given by:

p� z� � �d y

dz
� p� y� �

w2

�	
e


w2

2	 (40)

where w � e
z
�

� . Rearranging this equation, it becomes

p� z� �
2

�
eg
eg

(41)

where g � e
z � �

�
� log 2	. This is the Fisher–Tippett distribution,

often called double-exponential distribution. The mean and variance
are obtained through:

z� �
�

2
�log �2	� � �� � � (42)

�z
2 �

����2

24
(43)

where � is the Euler-Masheroni constant (� � 0.5772) (Abramowitz
and Stegun 1972).

APPENDIX 2

�0 estimator
In this Appendix, we will show that the estimator

�0 � min� zi� (44)

used for the initialization of the offset parameter �, �0, used in eqn (8)
is biased and its expected value is computed.

Let us consider the set Y � {yi} of observations represented in
Fig. 21. It is assumed that the elements yi are independent and identi-
cally distributed with distribution g(y).

Let

t � min� yi� (45)

and the minimum of Y, be a random variable. Let us compute its density
probability function h(t) � p(min(yi) � t).

Let Pi(x) be the probability of yi to belong to the interval [x, x �
	] and all other elements be greater than x � 	 (see Fig. 21). This
probability is:

Pi� x� � 

x

x�	

� g� yi�d yi� �
j�i

N
1

x�	

�

g� yj�d yj (46)

Because all the elements of Y are identically distributed

Pi� x� � 

x

x�	

� g� y�d y� �

x�	

�

g� y�d y� N
1

(47)

and making 	 3 0 leads to the density probability function of the
minimum of Y

pi� x� �
Pi� x�

	
� g� x��1 � G� x��N
1 (48)

where G( x)� �0
x g(�)d� is the cumulative distribution function of y.

The probability of at least one element of Y being equal to t (i.e.,
the density probability function of the minimum of Y) is:

h�t� � �
i

pi�t� � Ng�t��1 � G�t��N
1 (49)

Let

�0 � min� zi� (50)

with

zi � � log� yi � 1� � � (51)

then

�0�t� � min� zi� � min�� log� yi � 1� � ��

� � log�min� yi� � 1� � � � � log�t � 1� � � (52)

leading to the expected value of �0(t)

E��0� � 

0

�

�0���h���d�. (53)

Let us consider the observed data, yi, as being Rayleigh-distrib-
uted with parameter 	

g� y� �
y

	
e


y2

2	 . (54)

Replacing this expression in eqn (49) leads to:

h�t� � N
t

	
e 


t2

2 	 

t

� � �

	
e 


�2

2	d�� N
1

�
t

	�
e 


t2

2	� , (55)

where

Fig. 21. Graphic representation of a set of random variables.
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	� � 	/N. (56)

This result shows that the distribution function of the minimum
of a set with N elements with Rayleigh distribution, with parameter 	,
is also Rayleigh–distributed with parameter 	/N. The larger the num-
ber of elements, the closer to zero is the expected value of the mini-
mum.

Let us replace (55) in (53), leading to:

E��0� � �A � � (57)

where

A � 

0

��

a���d�, (58)

with

a��� �
e


�2

2	�

� � 1
(59)

Because a(�) � 0 for � � 0, (58) is greater than zero. Therefore,

E��0� � �, (60)

(i.e., the estimator �0 � min(Z) is biased and greater than �). The
coefficient A depends on 	�, which depends on the amount of data, N;
see eqn (46). The larger the amount of data, the smaller is 	�. In the
limit, as the amount of data grows, 	� 3 0, which implies A 3 0.
Therefore, for a large amount of data, the estimator �0 can be consid-
ered to be unbiased.
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