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Abstract: This paper describes a system to reconstruct a 3D region of the human body from a set of ultrasound images.
Several issues make this problem difficult: non uniform sampling of the 3D region, the presence of multiplica-
tive noise (specke), the non linear compression of the ultrasound images performed during the acquisition
process and image misalignment. A reconstruction algorithm is proposed which takes all these issues into
account in a Bayesian framework. An interpolation model is adopted to define the acoustic reflectivity of the
human tissues in the region of interest. The volume coefficients as well as the alignment and compression pa-
rameters are estimated by the minimization of a single objective function in three consecutive steps, performed
in each iteration of the reconstruction algorithm. Experimental results are presented to assess the performance
of the algorithm.

1 Introduction

Ultrasound systems are widely used in medical diag-
nosis. Most of them operate in B-scan mode allow-
ing the visualization of cross sections of the human
body, in real time (Quistgaard, 1997). B-scan pro-
vides valuable anatomical cues but has several limita-
tions, namely, it does not allow the visualization of the
organs surface, accurate volume measurement or the
visualization of arbitrary cross sections of the human
body. 3D ultrasound has been proposed to overcome
these difficulties.

3D ultrasound aims to visualize the human body
in a given region of interest from a set of ultrasound
images (Rohling et al.,1996). The Fig.1 shows the
architecture of a 3D ultrasound system, including a
data acquisition block which produces sequences of
ultrasound images as well the position and orientation
of each observed image.

Two approaches have been adopted in the litera-
ture to achieve this goal (Nelson et al., 1999): vol-
ume reconstruction, e.g. see (Carr, 1996; Sanches et
al., 2000) and surface estimation, e.g. see (Raya et
al., 1990; Tagare, 1999; Treece et al., 1999). In both
cases, the main difficulties concern: i) non uniform
sampling (some regions of the human body are not
observed), ii) multiplicative noise; iii) unknown pre

processing and iv) misalignment. Each of these diffi-
culties is briefly described:

Figure 1: Acquisition system.

a) Speckle noise
The RF signal produced by the ultrasound probe is

corrupted by multiplicative noise similar to the one
observed in LASER (Abbot et al.,1979 ) or SAAR
(Dias et al., 1998) measurements. This noise is pro-
duced by the interaction of coherent radiation with a
large number of scatters and it has Rayleigh distribu-
tion (Burckhardt, 1978).

When the number of scatters is low or some of them
are stronger than the others, the Rayleigh distribution
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is no longer valid (Narayanan et al., 1994) and other
distributions should be used instead (e.g. the K dis-
tribution (Jakeman et al., 1976)). This situation oc-
curs at the organ surfaces where specular reflections
lead to pixel intensities which can not be described
by a Rayleigh model. The speckle noise present in ul-
trasound images must be explicitly considered in the
design of a reconstruction algorithm.

b) Nonlinear Compression
The dynamic range of the RF signal (typically

60dB) is higher than the dynamic range of the moni-
tor used to display the images (typically 25dB) (Dutt,
1996). The ultrasound equipment compresses the RF
signal in a preprocessing block, using a logarithmic
function (Lopas et al., 1989). Furthermore, the user
may change the compression parameters to improve
visualization. Therefore, the pre-processing param-
eters are not known in advance. Unfortunately the
processing changes the probability distribution of the
ultrasound images which become no longer Rayleigh.
In order to use the Rayleigh model we have to esti-
mate the compression parameters used in each exper-
iment to expand the observed images.

c) Misalignment
There are two main reasons for image misalign-

ment.
The ultrasound probe must be kept under pressure

during the acquisition process in order to obtain good
acoustic coupling. This procedure modifies the organ
shapes and positions leading to significant geometric
errors that degrade the final reconstruction.

The position and orientation of each image are
measured by an electromagnetic locator (Fasttrack,
1993; Carr, 1996). This information allows to com-
pute the 3D position of each image pixel used in the
reconstruction process. However, the pose parameters
are corrupted by measurements errors which must be
compensated in the reconstruction process. This pa-

per describes a system for 3D reconstruction which
takes these difficulties into account in a Bayesian
framework. The proposed algorithm consists of three
steps which are iteratively performed as shown in
Fig.2.

The paper is organized as follows. Section 2 for-
mulates the problem and section 3 presents the mod-
els used for estimation proposes. Section 4 addresses
optimization issues. Section 5 presents experimental
results and Section 6 concludes the paper.

2 Problem formulation

Let U be a set of parameters defining the acoustic
impedance in the region to be reconstructed . Let
D be a set of alignment parameters associated with
each cross section andθ the parameters defining the

compression function used in the pre-processing step
by the ultrasound equipment. The exact meaning of
these parameters is clarified in the next sections.

The goal of the reconstruction algorithm is to si-
multaneously estimate these parameters in a Bayesian
framework using a MAP criterion. This problem can
be formulated as follows

(Û , D̂, θ̂) = arg max
U,D,θ

J(U,D, θ, V ) (1)

whereV is the observed data, i.e., the image sequence
and the positions and orientations of the ultrasound
probe andJ(U,D, θ, V ) is an objective function to
be maximized.

J is the logarithmic of the joint probability density
function of the data and the unknown variables,

J(U,D, θ, V ) = log [(p(V |U,D, θ)p(U)p(D)p(θ))] (2)

In this paper, a uniform prior is considered forp(θ).
The optimization procedure is decomposed in three

steps, as shown in Fig.2: 1)volume reconstruction,
2)non linearity estimation and 3)alignment. The three
steps are performed in each iteration until conver-
gence is achieved. In each step the objective function
(2) is maximized with respect to each set of parame-
ters leading to the following optimization problem

1st step - Volume reconstruction

Û = arg max
U

J(U, D̂, θ̂, V ) (3)

2nd step - Alignment

D̂ = arg max
D

J(Û , D, θ̂, V ) (4)

3rd step - Non linearity

θ̂ = arg max
θ

J(Û , D̂, θ, V ) (5)

3 Models

This section describes in detail the models used for
3D reconstruction of the human organs in the region
of interest.

3.1 Volume representation

The system developed in this paper aims to recon-
struct the tissue reflectivity,f , in a given region of
interestΩ.

It is assumed thatf belongs to a class of admissi-
ble functions defined in a spatial domain,Ω ⊂ R3,
i.e., f : Ω → R. Furthermore, it is assumed that the
set of admissible functions is a finite dimension vector
spaceF with known basis functions, (bi : Ω → R).
Each functionf ∈ F can be expressed as a linear com-
bination of the basis functions,

f(x) = Φ(x)T U (6)
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Figure 2: Three step estimation algorithm: a)Volume
estimation, b)Nonlinearity function estimation and
c)Alignment.

whereΦ(x) = [φ1(x), φ2(x), ..., φN (x)]T is a vector
of basis functions andU = [u1, u2, ..., uN ]T is a Nx1
vector of coefficients. The estimation off resorts to
the estimation of the unknown coefficientsU . It is

Figure 3: 1D basis function.

assumed that eachφi(x) is a local function obtained
by shifting a known functionh : R3 → R, i.e.,

φi(x) = h(x− µi) (7)

whereµi ∈ R3 is the i-th node of a cubic grid (see
Fig. 4) defined inΩ. In this paper it is assumed thath
is a tri-linear interpolation function defined by:

h(x) =

{∏3
i=1(1− |xi|

∆ ) x ∈ δ,

0 otherwise.
(8)

wherexi is the i-th coordinate ofx, ∆ is the grid step
andδ = [−∆, ∆]3(see Fig.3). The grid defines a par-
tition of Ω into cubic voxels. It can be concluded from
(7,8) that each basis functionφi has a finite support
consisting of 8 voxels and each 3D point belongs to 8
support regions. Therefore to computef(x0) defined

Figure 4: Cubic grid.

Figure 5: Neighborhood system .

in (6) only 8 coefficients are needed since all the other
basis functions are zero atx = x0. A Gibbs prior is
adopted for the volume coefficients (Geman, 1984))

p(U) =
1
Z

e−ψ
P

g P (ug) =
1
Z

e−ψ
P

g

P
i (ug−ugi)

2
(9)

whereugi are the neighbors ofug(see Fig.5) and Z
is a normalization factor (see (Sanches et al., 2000)
for details). The parameterψ controls the strength of
the links among the neighbors allowing the control of
smoothness of the final reconstruction.

3.2 Data Model

The data used to estimatef consists of a sequence
of ultrasound images complemented with the trajec-
tory (position and orientation) of the ultrasound sen-
sor during the medical exam. This information al-
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lows to compute a set of data points,V = {vi},
containing geometric and intensity information i.e.,
vi = (zi, xi), wherezi is the intensity of the ith pixel
andxi ∈ R3 its position.

It is assumed that the RF intensities are a set
of i.i.d. (independent and identically distributed)
random variables with Rayleigh distribution (Burck-
hardt, 1978; Abbot et al.,1979 ; Wells et al. (1981)).
Statistical independence of all elements ofZ is con-
sidered because the PSF (point spread function) of
the image acquisition system is assumed to be smaller
than the inter-pixel distance (Dias et al., 1998). The
density function associated withyi is given by

p(yi) =
yi

f(Tp(xi))
e
− y2

i
2f(Tp(xi)) (10)

whereyi denotes the RF intensity of i-th pixel of the
uncompressed image andf(Tp(xi)) represents the re-
flectivity associated to the positionTp(xi). Tp is an
alignment function which corrects the position of the
pixels of the pth cross-section.

However,y is not available. The observed is the
output of the pre processing block,z(see Fig. 1).

In this paper a log-compression law is considered
for modeling the pre-processing block. Therefore

zi = g(yi) = ξ log(yi + 1) + β (11)

whereθ = (ξ, β) are unknown parameters to be esti-
mated. Therefore the distribution ofz is given by

p(zi) =
∣∣∣∣
dy

dz

∣∣∣∣ p(yi) (12)

where p(y) is the density function of the non-
compressed ultrasound image anddy/dz is the
derivative of the inverse compression function. Using
(10,12) leads to

p(V |U,D, θ) =
∏

i

(
wi(wi + 1)
ξf(Tp(xi))

e
− w2

i
2f(Tp(xi)) ) (13)

where

wi = e
zi−β

ξ − 1 (14)

3.3 Geometric Errors

In the previous section the position of each pixel is
obtained by applying a transformationTp(x) to the
position provided by the spatial locator. This trans-
formation is defined as

x̂p
i = Tp(x

p
i ) = xp

i + dp (15)

wheredp is a displacement vector to be estimated,

dp = dp
1u

p
1 + dp

2u
p
2 (16)

Figure 6: Displacement vector.

where(up
1, u

p
2) are two orthogonal vectors, parallel to

the inspection plane with length equal to pixel size;
(d1, d2)p are coefficients associated to each cross-
section defining the length and direction of the dis-
placement vector (see Fig.6). The displacement error
dp is assumed to be the same for all pixels of the p-th
cross section.

This model assumes that the displacement vec-
tors belong to the planes associated with the cross-
sections. In fact, the most important source of geo-
metric errors is the pressure of the ultrasound probe
against the body. It is expected that this compres-
sion makes the tissues move along the main axis of
the cross section plane.

It is also assumed that the coefficientsdp
r with

r = 1, 2 are i.i.d. random variable with normal distri-
butionp(dp

r) = N(0, σ2
d). Therefore,

p(D) =
∏
p

1
2πσ2

d

e
− ‖dp‖2

2σ2
d (17)

4 Optimization

The objective function to be maximized can now be
obtained by replacing (9), (13), (17) in (2), discarding
the additive constants

J(U,D, (ξ, β), V ) =
∑

i

[log (
wi(wi + 1)

f(xi)ξ
)− w2

i

2f(xi)
]

− 1
2σ2

d

∑
p

[(dp
1)

2 + (dp
2)

2]

−ψ
∑

g

∑

i

(ug − ugi)2 (18)

Each step of the algorithm (18) corresponds to the
maximization ofJ with respect to a set of parame-
ters. The sequence of these three maximization pro-
cesses are irrelevant if the initial estimates of each set
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is in the vicinity of the final solution. Each of these
optimization problems is addressed below. The ini-
tialization procedure will be treated in section 4.4.

4.1 Volume estimation

The optimization of (18) with respect toU is a diffi-
cult problem since the number of parameters to esti-
mate is very large (typically millions of coefficients).
Furthermore, (18) is a non convex and nonlinear func-
tion (Li, 1998), for which there is no closed form so-
lution. Therefore, numerical methods must be consid-
ered (Conte et al., 1981).

To solve (3) the ICM algorithm proposed by Besag
(Besag, 1986) is used in this paper. The multivari-
ate optimization problem is converted into a sequence
of 1D optimization tasks. In each iteration, the objec-
tive function is considered as a 1D function depending
on a single parameter, keeping all the others constant.
During the iterative process all the parameters are se-
quentially updated, until convergence is achieved.

To maximize (18) with respect to one generic vol-
ume coefficient,up, the following stationary condi-
tion must be met

∂

∂up
J(U,D, θ, V ) = 0 (19)

Using the fixed point method (?) one obtains

n+1ûp =
1

4ψNv

∑

i

w2
i − 2f(xi)
f2(xi)

φp(xi) + ūp (20)

where

wi = e
zi−β

ξ − 1 (21)

and

ūp =
1

Nv

∑

ug∈δp

ug (22)

Nv is the number of control points inside the neigh-
borhoodδp of the p-th grid node p(Nv = 6).

4.2 Alignment

A displacement vector must be estimated for each ul-
trasound image. Only the pixels of the pth image are
used to estimatedp.

Equation (4) is solved by finding a stationary point
of (18) with respect to the displacement vector,dp,
i.e.

∇dpJ(U,D, θ, V ) = 0 (23)

where∇dp is the gradient ofJ with respect to the vec-
tor dp. This equation is solved for each cross-section

by using a multidimensional version of the Newton-
Rapson algorithm (Bakhvalov, 1976)

n+1dp =n dp −Ddp

upd (24)

whereDdp

upd is the updating term

Ddp

upd = ∇Jdp(U,D, θ, V )Hdp(U,D, θ, V )−1 (25)

where Hdp(U,D, θ, V ) is the Hessian matrix of
J . The computation of∇Jdp(U,D, θ, V ) and
Hdp(U,D, θ, V ) leads to:

n+1d̂p
1 =n d̂p

1(1−
J2J12 − J1J22

J11J22 − J2
12

) (26)

n+1d̂p
2 =n d̂p

2(1−
J1J12 − J2J11

J11J22 − J2
12

) (27)

whereJ1, J2, J12, J11, J22 denote partial derivatives
of J with respect tod1, d2 given by

J1 = 1
2

∑
i (ai

∂f(T p(xp
i ))

∂dp
1

)− dp
1

σ2
d

J2 = 1
2

∑
i (ai

∂f(T p(xp
i ))

∂dp
2

)− dp
2

σ2
d

J11 = −∑
i (bi(

∂f(T p(xp
i ))

∂dp
1

)2)− 1
σ2

d

J22 = −∑
i (bi(

∂f(T p(xp
i ))

∂dp
2

)2)− 1
σ2

d

J12 = −∑
i (bi

∂f(T p(xp
i ))

∂dp
1

∂f(yp
i )

∂dp
2

)

(28)

In these expressions

ai = (zp
i )2−2f(T p(xp

i ))

f(T p(xp
i ))2

bi = (zp
i )2−f(T p(xp

i ))

f(T p(xp
i ))3

(29)

The sums in (28), (29) are computed for all the pixels
of the p-th image, leading to

∂f(x)
∂dτ

=
∂f(x)

∂x

∂x

∂dτ
= ∇f(x).uτ (30)

where∇f(x) is the gradient off(x) computed atx
and∇f(x).uτ is the derivative off(x) along theuτ

direction.

4.3 Compression estimation

To estimate the compression parameters a similar ap-
proach is followed based on the solution of the sta-
tionary condition

∇θJ(U,D, θ, V ) = 0 (31)

As before, a two-dimensional version of the Newton-
Rapson method is used to solve 31.

n+1θ̂ =n θ̂ −Dθ
upd (32)
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whereDθ
upd is the updating term

Dθ
upd = ∇θJ(U,D, θ, V )Hθ(U,D, θ, V )−1 (33)

where∇θJ(U,D, θ, V ) is the gradient vector andHθ

is the Hessian matrix with respect toθ. Equation (33)
can be rewritten as follows

n+1ξ̂ =n ξ̂(1− JβJξβ − JξJββ

JξξJββ − J2
ξβ

) (34)

n+1β̂ =n β̂(1− JξJξβ − JβJξξ

JξξJββ − J2
ξβ

) (35)

where

Jξ =
∑

i Ai log(wi + 1)− 1
Jξξ =

∑
i 2Ai log(wi + 1) + Bi log2(wi + 1)− 1

Jβ =
∑

i Ai

Jββ =
∑

i Bi

Jξβ =
∑

i Ai + Bi log(wi + 1)
Ai = w3

i +w2
i−2f(T p(xp

i ))wi−f(T p(xp
i ))

f(T p(xp
i ))wi

Bi = 2w3
i +w2

i +f(T p(xp
i ))

f(T p(xp
i ))w2

i
(wi + 1)

(36)

4.4 Initializations

The initialization of the unknown variables is a key
step in achieving good reconstruction results. If the
initial parameters are far from the true values the op-
timization algorithm may converge to a local maxi-
mum corresponding to a wrong reconstruction of the
volume.

In this paper, the displacement parameters are ini-
tialized to zero,(dp

i = 0), since we have assumed that
the displacement vectors have.

The initialization ofup andθ is obtained using the
mean and variance of the observed data. However,
it is not possible to find closed form expressions for
these statistics for the model used in this paper (see
(11)). To overcome this difficulty a slightly different
model is considered for the compression law

z = ξ log(y) + β (37)

Assuming that y is a random variable with
Rayleigh distribution,p(z) becomes a Fisher-Tippet
distribution also known as double exponential distri-
bution (Abramowitz et al., 1972; Dutt, 1996)

p(zi/U) =
w2

i

ξf(xi)
e
− w2

i
2f(xi) (38)

wherewi = e
zi−β

α

As it can be verified, this distribution is similar to
(13) for the range of values used in ultrasound images
(0 < zi < 255). This suggests the approximation of
(13) by (38). The mean and standard deviation of the

Fisher-Tippet distribution are given by(Abramowitz
et al., 1972)

z̄ = ξ(log(2f)− γ)/2 + β (39)

σz = πξ/
√

24 (40)

whereγ = 0.5772... is the Euler-Mascheroni con-
stant.

Based on the above expressions, initial values for
theξ, u parameters can be computed as follows

ξ̂0 =

√
24
π2

σ2
z (41)

and

û0
p = 0.5e

2π(z̄−min z)√
24σ2

z

+γ

(42)

Theβ parameter will be initialized by

β̂0 = min(z) (43)

It was experimentally found that this initialization
usually provides good estimates forβ. In fact, this is
an expected result sincemin(z) = min(log(y + 1) +
β) = log(min(y) + 1) + β = log(0 + 1) + β = β.

5 Experimental Results

The proposed algorithm was tested with synthetic and
real data. Only examples with real data will be shown
in this paper to keep the paper within the allowed
length. The images and 3D measurements used in this
work were provided by R. Prager and A. Gee from the
University of Cambridge.

Three types of testes are shown to illustrate the per-
formance of the reconstruction algorithm (see Fig.2):
results obtained with the basic reconstruction method,
with nonlinearity compensation and with alignment.

5.1 Volume Reconstruction

Fig.7 shows the reconstruction results obtained for a
sequence of62 images with176× 176 pixel of a gall
bladder (simple sweep1) using the method described
in section 4.1 without nonlinearity compensation or
geometric alignment.

Fig.7.a) shows two ultrasound images of the gall
bladder, Fig.7.b) shows the corresponding cross-
sections of the reconstructed volume and Fig.7.c)
shows two cross sections of the reconstructed volume
associated to planes which can not be observed in a
medical exam due the geometry of the human body.
Fig.7.d) shows the representation of the organ surface
obtained by ray-casting. Fig.8 shows the results ob-

1The sequence was obtained by sweeping the ultrasound
probe in the same direction.
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Figure 7: Gall bladder reconstruction. a)Ultrasound
images, b)Cross sections extracted from the estimated
volume, c)New cross-sections not visible during the
inspection process and d)Surface extracted from the
estimated volume.

tained with a longer sequence corresponding to two
sweeps (94 images) of the ultrasound probe in oppo-
site directions. The misalignment of the images ob-
tained in each sweep produces undesirable artifacts in
the reconstruction results as shown in the figure.

5.2 Alignment

The ultrasound images are geometrically distorted.
The probe pressure against the tissues distorts the ge-
ometry of the human organs. This effect is specially
visible in the case of multiple sweeps since the same
cross sections are observed several times in different
pressure conditions. Misalignment errors such as the
ones shown in Fig.8 degrade the reconstruction re-
sults.

Fig.9 shows the reconstruction results obtained
without and with alignment for a sequence of images
obtained by sweeping the ultrasound probe in two op-
posite directions.

Figure 8: Misalignment effect visible in the recon-
structed volume.

Figure 9: Reconstruction without and with alignment.
a)Ultrasound images, b)Correspondent cross sections
extracted from the estimated volume without align-
ment compensation and c)Cross sections extracted
from the reconstructed volume using the alignment
compensation.

Fig.9.a) shows the original ultrasound images.
Fig.9.b) shows the reconstruction results for the cor-
responding inspection planes, displaying multiple
boundary effects. Fig.9.c) shows the results obtained
with alignment block. Significant improvements are
observed since the presence of multiple shadows for
a simple boundary is eliminated.

5.3 Nonlinearity Compensation

The use of the nonlinearity compensation allows
to improve the reconstruction results by enhancing
anatomic details which are blurred by the basic re-
construction method.

Fig.10 shows the reconstruction results obtained
without and with compensation. Fig.10.a) shows the
original images and the intensity profiles obtained
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without nonlinearity compensation. The organ sur-
face appears somewhat blurred in this image.

Figure 10: Reconstruction results of a gall bladder. a)
Ultrasound images and the corresponding profiles ex-
tracted from the estimated volume without nonlinear-
ity compensation. b) Decompressed ultrasound im-
ages using the estimated function and the correspond-
ing profiles extracted from the estimated volume us-
ing the nonlinearity estimation.

Fig.10 shows the decompressed images obtained
using the estimates provided by the nonlinearity esti-
mation algorithm and the corresponding intensity pro-
files of the reconstruction results obtained with the
decompressed images. An improvement is clearly ob-
served, specially in the non stationary regions.

6 Conclusions

3D ultrasound aims to visualize the human body in a
given region of interest from a set of ultrasound im-
ages. Two approaches have been adopted in the liter-
ature to achieve this goal: volume reconstruction and
surface detection. In both cases the main difficulties
concern non uniform sampling (some regions of the
human body are not observed), low signal to noise,
nonlinearity compensation, ratio and image misalign-
ment. Instead of relying on ad hoc techniques for
dealing with each of these difficulties, this paper pro-
poses a reconstruction algorithm based on the mini-
mization of a single objective function. This function

is derived from probabilistic models of the data ac-
quisition process which account for the presence of
multiplicative noise with Rayleigh distribution, non
linear pre-processing of the ultrasound data with un-
known compression function, geometric distortions
of the human organs during the medical exam due to
the pressure of the ultrasound probe against the body,
measurement errors of the probe position and orien-
tation. An optimization algorithm is described based
on three steps: Rayleigh reconstruction, non-linearity
estimation and image alignment. These steps are iter-
atively performed until convergence is achieved. Ex-
perimental results with real data are present to assess
the performance of the algorithm. It is shown that
each of the three steps performs an important role to
improve the reconstruction results.
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