3D RECONSTRUCTION FROM LOG-COMPRESSED RAYLEIGH IMAGES
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ABSTRACT

This paper addresses 3D reconstruction in the presence of
multiplicative noise and non-linear compression of the ul-
trasound data. Ultrasound images are often considered as
being corrupted by multiplicative noise with Rayleigh dis-
tribution. However, commercial ultrasound equipment also
performs a non-linear image compression which reduces the
dynamic range of the ultrasound signal, for visualization
purposes. In this paper the non-linear compression is ex-
plicitely modelled and considered for 3D reconstruction of
medical data. The proposed algorithm is tested with syn-
thetic and real data and the results are discussed in the

paper.
1. INTRODUCTION

Three dimensional ultrasound aims to reconstruct data in a
region of interest from a set of ultrasound images. Several
difficulties are usually involved in this process: i) ultrasound
images have a low signal to noise ratio being corrupted by
multiplicative noise; ii) only a subset of the region of inter-
est is intersected by the inspection planes requiring the use
of interpolation techniques; iii) the ultrasound equipment
introduces a nonlinear compression of the images which dis-
torts the probability distribution of the observed data. Two
approaches are adopted in practice to circumvent these dif-
ficulties. Simple reconstruction methods based on ad hoc
procedures are sometimes used (e.g., see [1]). The main
advantage of these methods lies on their ability to produce
reconstruction results in real time. Other authors prefer to
work with the backscattered echo (RF signal) i.e., the sen-
sor output before being compressed (see [2, 3]). This avoids
the problem of dealing with the nonlinear compression per-
formed by the ultrasound equipment which is usually un-
known. However, this approach is not always easy to im-
plement in practice since the RF output is not available in
most ultrasound equipments. The effect of non-linear pre-
processing has been considered in the past, in the scope of
noise reduction with median and adaptative filtering [4, 5].

In this paper the reconstruction of a 3D data volume
from noisy and compressed ultrasound images is addressed.
The set up is shown in Fig. 1. A free hand ultrasound
probe is used to obtain a sequence of ultrasound images,
corresponding to cross sections of the organ to be inspected.
A spatial locator is used to measure the position of the
ultrasound probe at each instant of time . Each image is

this work was partially supported by FCT

0-7803-6725-1/01/$10.00 ©2001 |IEEE

345

jsm@isr.ist.utl.pt

Visualization

RF Signal

i

f(x)

A
Pre-Processing Estimation }-P f(x)

Compressed
Data

Spatial Locator Information

Fig. 1. Block diagram of the processing system

then pre-processed by the ultrasound equipment. Only the
output of the pre-processing stage is usually available.

A Bayesian approach is adopted in this paper to recon-
struct the unknown volume taking into account the mul-
tiplicative noise present in the backscatered signal, as well
as the non linear compression performed by the aquisition
system. Since the compression law is unknown it also has
to be estimated from the observed data. The paper is orga-
nized as follows. Section 2 describes a basic reconstruction
algorithm without non linearity compensation. Section 3
extends these results to encompass the compression effects.
Experimental results are described in section 4 and section
5 concludes the paper.

2. 3D RECONSTRUCTION

The Rayleigh reconstruction algorithm (without non-linearity
compensation) is described in [6] and will be briefly sum-
marized here, for the sake of completeness. Consider the
experimental setup described in Fig.1. Given a set of ul-
trasound images and the output of the spatial locator, we
wish to estimate the acoustic reflectivity in a given volume
of interest.

Let U = {ug4 } be a set of unknown parameters defining a
3D function f in a region of interest and let X = {z;},Y =
{y: } denote the observed data: pixel locations in 3D space
and intensities. The MAP estimate of U is obtained by

minimizing

EFE=F,+FE, (1
where F, = —log p(Y/U) is minus the log-likelihood func-
tion and B, = — log p(U) is a quadratic regularization term.
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where uy is a volume coefficient and wuy; denotes the j-th
neighbor of u, (see the details in [6]). The 1 parameter
measures the strength of the connections among neighbor-
ing nodes. A high value of ¢ corresponds to strongly con-
nected neighbors (differences receive a high penalty) while
low values of 1 correspond to weak connections.

It is assumed that Y is a set of i.i.d. (independent and
identically distributed) random variables with Rayleigh dis-
tribution [7],
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where y; denotes the amplitude of i-th pixel of the non-

compressed image sequence and f(z;) represents the reflec-
tivity associated to the position z;, to be estimated. It is

assumed that
F@) =) upby(z) (4)

where b, are known basis functions.
energy becomes

Using (3), the data
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The minimization of (1) is performed by the ICM algo-
rithm (see the details in [6]).

3. RECONSTRUCTION WITH COMPRESSED DATA

Unfortunately, the echo intensities Y are not available in
most ultrasound equipments. Only a nonlinear version of
Y is available. Here, it is assumed that the backscattered
signal, Y, is modified by a non linear transformation

2z =alog(y; +1)+ 3 (6)

where z; is the intensity of the i th pixel and («,3) are
the unknown parameters of the compression law to be esti-
mated. The distribution of z; is no longer Rayleigh, being
defined by

plzi) = (7

where p(y) is the density function of the original ultrasound
image (Rayleigh) and dy/dz is the derivative of the inverse
compression function. Using (3,7) leads to

dy
T ‘ pyi)
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Using (8) the energy of the compressed data becomes

N

Therefore, the estimation of the U, «, 3 is performed by
minimizing (1), after replacing E, by £, . The minimiza-
tion of £ will be split into two alternating steps (see Fig.
2): volume reconstruction and non-linearity estimation.

U}

27!

- “’Z i ”) (10)

346

Volume

Reconstruction Estimated

VYolume

Observed
Data

Non-linearity
Estimation

Fig. 2. Block diagram of the reconstruction process.

3.1. Volume Reconstruction

In this paper, each component u, of U is sequentially up-
dated by the ICM algorithm. In each iteration all the un-
known variables are sequentially estimated considering (1)
as an unidimensional function of u,. The Newton-Rapson
method is used to solve B(fzp)E(up) = 0 leading to

wj 72f z;
Wiy _n g +A0~5Z —Q—f by (1) — 2N (up — )
P f(@)
> _beQ (z:) + 29N, o
with
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where "4, is the estimate of u, obtained at the n-th iter-
ation, N, is the number of control points inside the neigh-
borhood 4, of the p-th grid node p(N, = 6) and A is a
gain.

3.2. Non-linearity Estimation

To estimate («, 3) a bidimensional version of the Newton-
Rapson algorithm is used, i.e.,
= (nééan /é) - E(ﬁvn OAévn B)H71

where VE(U, ag, Bo) is the gradient vector and H is the
Hessian matrix with respect to «, 3. Equation (13) can be
rewritten as follows

(", B (13)
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where
Jo = ZZ Ailog(w; +1) —1
Joo = Y, 2Ai log(wi + 1) + B; log?(w; + 1) — 1
95 =, Ai
g5 = 9, Bi
Gap = >, Ai + Bilog(w; +1) (16)
A witw?—2f(z)w;—f(2;)
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and ., s are update gains.

It should be stressed that the estimation of a, 8 requires
an estimate of the volume coefficients, /. The converse
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Fig. 3. Restoration results: Images and Histograms. a)
Unobserved data (Rayleigh), b) Observed (compressed), c)
Decompressed result

is also true. Volume reconstruction assumes that o, 3 es-
timates are available. Improved a, 3 estimates will allow
to achieve improved volume reconstruction and vice-versa.
This suggests a recursive procedure in which both steps al-
ternate.

4. EXPERIMENTAL RESULTS

This section presents reconstruction results with synthetic
and real data. T'wo methods are considered: i) the Bayesian
reconstruction algorithm without nonlinearity compensa-
tion, and ii) the reconstruction with compensation. Three
problems are considered in this section: i) the reconstruc-
tion of synthetic uniform volumes, ii) the reconstruction of
synthetic non uniform volumes and iii) the reconstruction
of medical data.

4.1. Uniform Volumes

Let us consider uniform volumes first i.e., f(z) = const..
This allows to test the performance of the proposed algo-
rithm in the estimation of the nonlinearity parameters. An
example is shown in Fig.3. Fig.3a shows a synthetic image
with random Rayleigh distributed pixels. The histogram
of the pixel intensity is shown below. Fig.3.b shows the
log compressed image obtained by applying the non-linear
transformation (6) to the pixels of the original image with
a = 8 = 20. The histogram is no longer Rayleigh as shown
in the figure. Finally Fig.3.c shows the estimated image
using the log compressed model. It is concluded that the
estimated image is similar to the original image and their
histograms are almost identical, showing the ability of the
algorithm to recover the original data.

Monte Carlo tests were performed to evaluate the mean
and standard deviation of &, ﬁ as a function of «, 3. The re-
sults were obtained with 20 Monte Carlo runs. In each run,
the parameters were estimated using a uniform cross sec-
tion with 128 x 128 pixels. [t was experimentally observed
that the MAP estimates are unbiased and their standard
deviations increase linearly with o.
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Fig. 4. Reconstruction/Restoration results using a 3D syn-
thetic cube. Data: set of 50 cross-sections corrupted by
Rayleigh noise and log-compressed with o = 20,8 = 20.
Reconstructions methods: with and without non-linear
model (& =20.5,3=19.7) .

4.2. Non Uniform Volumes

Let us now consider the reconstruction of non uniform vol-
umes. For the sake of simplicity, it is assumed that the
function f(z) to be estimated is binary: it has a high value
inside a cube to be reconstructed and a low value outside.
Several experiments were performed. In each experiment
50 cross sections of the object are computed. The Rayleigh
distributed images are compressed by the log compression
law using selected values for a, 3. Then, the algorithm de-
scribed in this paper is used to simultaneously reconstruct
the volume and estimate the o, 3 parameters. Fig.4.a il-
lustrates the steps involved in one experiment and Fig.4.b
shows the reconstruction results without and with compen-
sation. Comparing the reconstructed profiles with the orig-
inal one, it is observed that a significant improvement is
achieved by using the non-linearity compensation. Table 1
shows the performance of both models for three different
values of a. The likelihood function and the SNR are used



with comp. without comp.
a | 8 & 16 l SNR l SNR
1 10] 1.0 |00 ]-108 ] 63 [ -275 | -38.0
10 [ 0 [ 10.0 | 0.0 | -40.7 [ 6.3 | -53.0 3.4
50 [ 0[502]00]-615] 63 | -804 1.5

Table 1. Simulation results with synthetic data (Cube).

to evaluate the reconstruction results. This table shows
a clear improvement of the log-likelihood and SNR values
when the non-linearity compensation is used. The estimates
of o, B parameters obtained in these experiments are close
to the true ones.

The reconstruction results obtained with the non-linearity
estimation, proposed in this paper, are clearly better than
the ones obtained by a straight forward application of the
Bayesian reconstruction algorithm. It should be stressed
that the estimated volumes obtained with image compen-
sation are almost invariant with respect to the values of
a, 3. Furthermore, it was observed that the nonlinearity
compensation also improves the convergence of the recon-
struction algorithm.

4.3. Medical Data

The proposed algorithm was used in the reconstruction of
human organs using sequences of ultrasound images. Fig.
5, shows the results obtained for the reconstruction of a
thyroid from a set of 100 images. Although the output of
the reconstruction process is a 3D function, we prefered to
visualize the intensity profiles of the reconstructed volume.
Figure 5 shows four cross sections of the thyroid and the
intensity profiles obtained by sampling the reconstructed
volume along specific lines. To compute these profiles a
transformation is needed to convert f values into image
intensity values. Two different transformations were used
according to the model used:

Rayleigh model without compensation

()~ 2@ (17)

™

Rayleigh model with compensation
I(z) = a(log(2/ (x)) —7)/2 + 3 (18)

It is concluded that the algorithm presented in this pa-
per provides a better representation of details (see Fig.5.c
and Fig.5.d). Furthermore, the use of nonlinearity com-
pensation allows a significant improvement of convergence
rate.

5. CONCLUSIONS

This paper presents an algorithm to estimate the reflectiv-
ity function, f(z), in a given region of interest from a set
of compressed ultrasound images. A Bayesian approach is
used to estimate this function, by assuming that the posi-
tion and orientation of the ultrasound probe are accurately
known. The log-compression process performed at the pre
processing stage of the ultrasound equipment is explicitly
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Fig. 5. Thyroid Reconstruction: a) original images, b) orig-
inal intensity profiles, reconstruction results c¢) without and
d) with non-linearity estimation, e) compensated images

considered and compensated. The estimation of the log-
compression parameters is simultaneously performed with
the volume recontruction by optimizing a common ob jective
function (posterior density of the unknowns parameters).

The proposed algorithm was evaluated with synthetic
and real data. [t was shown that it allows an accurate
estimation of the compression law while it simultaneously
improves the reconstruction results. Furthermore, it also
speeds up the optimization process by improving the con-
vergence rate.
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