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A b s t ra ct . Ba y e sia n me tho ds ha v e be e n a v o ide d in 3 D ultra so und. T he

multiplic a tiv e ty pe o f no ise w hic h c o rrupts ultra so und ima g e s le a ds to
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a s a T a y lo r se rie s, un the v ic inity o f the ma x imum lik e liho o d e stima te s,

le a ding to a line a r se t o f e q ua tio ns w hic h a re e a sily so lv e d by sta nda rd

te c hniq ue s. Re c o nstruc tio n e x a mple s w ith sy nthe tic a nd me dic a l da ta

a re pro v ide d to e v a lua te the pro po se d a lg o rithm.
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1 I ntr oduction

This paper addresses the problem of 3D ultrasound. 3D ultrasound aims to

reconstruct the human anatomy from a set of ultrasound images, corresponding

to cross-sections of the human body. Based on this information, the idea is to

estimate a volume of interest for diagnosis proposes. This technique is wide

spread due essentially to its non invasive and non ionizing characteristics [1].

Furthermore, the ultrasound equipment is less expensive than other medical

modalities, such CT, MRI or PET [2, 3]. One way to perform 3D ultrasound

is by using 2D ultrasound equipment with a spatial locator attached to the

ultrasound probe, giving the position and orientation of the cross-section along

the time(see Fig.1). The estimation algorithm should fuse these information,

image and position, to estimate the volume.

F ig. 1. 3 D ultra so und a c q uisitio n sy ste m

Traditionally ultrasound imaging technique is made in real time using the

B-scan mode. The inspections results are visualized in real time being allowed

to the medical doctor to choose the best cross sections for the diagnosis. In 3D

ultrasound this goal is much more difficult to achieve since the amount of data is

much higher. However, reconstruction time should be kept as small as possible.

This is the reason why a lot of algorithms used in 3D ultrasound are designed

in ad hoc basis [4, 5], aiming to be as simple and fast as possible.

Bayesian approaches in 3D ultrasound have been avoided since these methods

are usually computationally demanding. In this paper we present an algorithm

for 3D ultrasound designed in a Bayesian framework. Its theoretical foundation is

presented as well the simplification procedures and justifications in order to speed

up the reconstruction process. Our goal is to designed an efficient reconstruction

algorithm to work in a quasi real time basis, while keeping a solid theoretical

foundation.

This paper is organized as follows. Section 2 describes the problem of 3D

reconstruction and the notation adopted in this paper. Sections 3 and 4 present

two algorithms for 3D reconstruction: the standard solution and a fast algorithm.



Section 5 present experimental results with synthetic and real data using both

algorithms. Finally section 6 concludes the paper.

2 P r oblem For mulation

This section describes the reconstruction of a 3D function f from a set of ultra-

sound images. Additional details can be found in [6].

F ig. 2. V o lume a nd ima g e c o o rdina te s

Let us consider a scalar function f(x) defined in Ω ⊂ R3, i.e., f : Ω → R. We

assume that this function is expressed as a linear combination of known basis

functions, i.e.,

f(x) =
∑

g

bg(x)ug (1)

where u1, u2, ..., uN are the unknown coefficients to be estimated and b(xi) are

known basis functions centered at the nodes of a 3D regular grid. Let {yi} be

a set of intensity data points, measuring f(x) at locations {xi}, belonging to

one of the inspection planes. It is assumed that intensity measurements, yi, are

corrupted by multiplicative noise and the goal is to estimate f(x) based on the

observations {yi}.

This estimation problem can be formulated in a Bayesian framework using

a MAP criterion, as follows: given a set of data Y = {yi} with a distribution

p(Y |U) which depends on the unknown parameters, U = {ug} with a prior

distribution p(U), estimate U in order to maximize the joint probability density

function of the data and parameters, p(Y,U), i.e.,

Û = argmax
U

log(p(Y |U)p(U)) (2)



In this paper we assume that all the elements of Y are i.i.d. (independent

and identically distributed) [8] with a Rayleigh distribution [9], i.e.,

log p(Y |U) =
∑

i

{log(
yi

f(xi)
) −

y2
i

2f(xi)
} (3)

where f(xi) is the value of the function to be reconstructed f at xi.

The prior used is gaussian [10], i.e.,

p(U) =
1

Z
e
−ψ

∑
g

∑
i
(ug−ugi)

2

(4)

where ugi is a neighbor of ug and Z is a normalization factor.

Therefore, the objective function can be expressed as

L(U) = l(U) + q(U) (5)

where l = log p(Y/U) is the log likelihood function of the data and q = log p(U)

is the logarithm of the prior associated to the unknown parameters.

To optimize (5) the ICM algorithm proposed by Besag [7] is used. The ICM al-

gorithm simplifies the optimization process by optimizing the objective function

with respect to a single variable at a time, keeping the other variables constant.

Each step is a 1D optimization problem which can be solved in a number of

ways. This step is repeated for all the unknown coefficients in each iteration of

the ICM algorithm.

To optimize (5) with respect to a single coefficient up the stationary equation,

∂l(U)

∂up
+

∂q(U)

∂up
= 0 (6)

is numerically solved.

The next sections present two approaches to compute (6). Section 3 attempts

to solve this equation using nonlinear optimization methods. Section 4 presents a

fast algorithm based on the solution of a linear set of equations. The second per-

form some simplifications in order to speed up the computations. Both methods

are iterative.

3 N onlinear method

Let us first compute the derivatives of l and q.

After straightforward manipulation it can be concluded that

∂l(U)

∂up
=

1

2

∑

i

(
y2
i
− 2f(xi)

f(xi)
2

bp(x1)) (7)

where the sum is performed for all data points that are in the neighborhood

[−∆,∆]3 of the p-th node. In fact, each data point contributes to the estimation

of its 8 neighboring coefficients (see Fig.3).



F ig. 3. N e ig hbo ring no de s o f a da ta po int.

It is also easy to concluded that

∂q(U)

∂up
= −2ψNv(up − ūp) (8)

where Nv is the number of neighbors of up (Nv = 6) and ūp is the average

intensity computed using the Nv neighbors.

To optimize the objective function a set of non-linear equations should be

solved,

1

2

∑

i

(
y
2

i − 2f(xi)

f(xi)
2

bp(x1))− 2ψNv(up − ūp) = 0 (9)

This is an huge optimization problem, which must be solved using numerical

methods. The ICM algorithm proposed by Besag [7] is used and each equation

is numerically solved by using the Newton-Rapson method assuming that the

other coefficients, uk, k �= p are known. The computation of the solution of (9)

is computationally heavy, presenting some undesirable difficulties.

First, it would be nice to factorize the equation in two terms, one depending

only on the data and the other depending on the unknown to estimate,

h(up)g1(Y )r1(U \ {up}) + g2(Y )r2(U \ {up}) +C = 0 (10)

where g1(Y ) and g2(Y ) are sufficient statistics. This formulation would allow

to concentrate the influence of the observed data on a small set of coefficients,

computed once for all at the first iteration and kept unchanged during the op-

timization process. Data processing would be done only once speeding up the

estimation process.

Unfortunately, it is not possible to write (9) in the form of (10), i.e., there

are no sufficient statistics for the estimation of the interpolating function f .

This means that all the data must be read from the disk and processed in each

iteration of the nonlinear reconstruction algorithm. This is a strong limitation



when a large number of cross-sections is involved, e.g., 1000 images with 640×480

pixels will lead to 3072e5 pixels, preventing a wide spread use of this algorithm.

Another important difficulty concerns the stability of the convergence pro-

cess. The system of equations (9) is non-linear. The stability of the numerical

methods used to solve it, strongly depends on the data and on the regularization

parameter, ψ, and on the initial estimates of U . The process of finding the right

parameters to obtain acceptable reconstructions is in general often done by trial

and error.

To overcome these difficulties an approximation approach is proposed in the

next section.

4 Linear solution

Let us develop l(U) in Taylor series about the maximum likelihood estimates,

UML,

l(up) = l(u
ML

p ) +
∂l(u

ML
p )

∂up
(up − u

ML

p ) +
1

2

∂
2
l(u

ML
p )

∂u2p

(up − u
ML

p )
2
+ ε (11)

the first derivative of l(U) with respect to up is

∂l(U)

∂up
≈

∂
2
l(uML

p )

∂u2
p

(up − u
ML

p ) (12)

where it was assumed that
∂l(u

ML

p
)

∂up
= 0 since by definition UML is a stationary

point of l(U). The residue ε was discarded for convenience.

Thus (6) takes the form

∂L(U)

∂up
≈

∂
2
l(uML

p )

∂u2
p

(up − u
ML

p )− 2ψNv(up − ūp) = 0 (13)

leading to

up =
1

1 + τp
u
ML

p
+

τp

1 + τp
ūp (14)

where τp = −
2ψNv

∂2l(uML
p

)\∂u2
p

Equations show that the MAP estimation can be seen as a linear combination

of the ML estimates with the average intensity computed in the neighborhood

of each node.

Let us compute the maximum likelihood estimation of U.

Assuming that f(x) changes slowly in the neighborhood of each node, i.e.,

f(xi) ≈ up will be used in (7) to obtain

∂l(U)

∂up
=

1

2u2
p

∑

i

(y
2
i bp(xi))−

1

up

∑

i

(bp(xi)) = 0 (15)



Solving with respect to u
ML

p
leads to

u
ML

p
=

1

2

∑
i
(y2
i
bp(xi))∑

i
bp(xi)

(16)

and by deriving (15) in order to up leads to

∂
2
l(uML

p
)

∂u2
p

= −

∑
i
bp(xi)

(uML
p

)2
(17)

This expression for the second derivative of the log likelihood function, ob-

tained by deriving (15) with respect to up, can be more accurately computed

if (7) is used. By deriving two times (7) with respect to up and after replacing

f(xi) by up it obtains:

∂
2
l(uML

p
)

∂u2
p

= −

∑
(yibp(xi))

2

(uML
p

)3
+

∑
b
2
p
(xi)

(uML
p

)2
(18)

We have used expression (17) in the reconstruction using synthetic data and (18)

in the case of real data.

Therefore, the MAP estimate of the volume of interest is obtained by solving

a system of linear equations given by (14) where τp =
2ψNv∑
i
bp(xi))

(uML

p
)2 and

where u
ML

p
is given by(16).

For sake of simplicity (14) can be rewrite as

up = kp + cpūp (19)

where kp =
u
ML

p

1+ τp
and cp =

τp

1+ τp
. These parameters, kp and cp are computed

once for all during the initialization phase. The solution of (14) can be done by

standard algorithms for the solution of linear sets of equations.

5 E xper imental Results

This section presents two 3D reconstruction examples using synthetic and real

data.

The synthetic data consists of a set of 100 images of 128 × 128 pixels cor-

responding to parallel cross sections of the 3D interval [−1,1]3 (see Fig.4).

The function to be reconstructed is assumed to be binary: f(x) = 5000, x ∈

[−0.5, 0.5]3, f(x) = 2500 otherwise. The cross sections were corrupted with

Rayleigh noise according to (3). The histogram of the whole set of images is

shown in Fig.5 and is a mixture of two Rayleigh densities. Both reconstruction

algorithm were used to reconstruct f in the interval [−1,1]3 using a regulariza-

tion parameter ψ = 16.10−6.

Fig.6 shows the profiles extracted from the estimated volumes using both

methods. These two profiles are quite similar which means that both methods



F ig. 4. C ro ss se c tio ns e x tra c te d fro m a sy nthe tic 3 D c ube

F ig. 5. Sy nthe tic da ta se t histo g ra m



lead to similar results in this problem. The SNR of 21.4dB for the nonlinear

method and 20.8dB for the fast algorithm proposed in this paper stresses the

ability of the linear algorithm to produce similar results as those obtained with

the nonlinear method.

It should be stressed that the linear method is less heavy in computational

terms. Fig.7 and Fig.8 show the evolution of the posteriori distribution function,

log(p(Y,U)) along the iterative process. Fig.7 displays log(p(Y,U)) as function

of the index of the iteration while Fig.8 displays the same values as function of

the time.

The nonlinear algorithm converges in less iterations(62) than the linear algo-

rithm(97) in this example. However, since each iteration of the nonlinear method

is slower and it involves processing all (millions) of the observations, the conver-

gence is slower in terms of computation time (see Fig.8) (in this case about 6

times slower than the linear method 1).

Fig. 9 shows cross sections of the 3D volume (left) as well as the 3D surface

of the cube displayed using rendering methods (right). The results are again

similar, the nonlinear method performing slightly better at the transitions.

F ig. 6. Pro file s e x tra c te d fro m the o rig ina l v o lume a nd fro m the e stima te d v o lume s

using the no nline a r a nd line a r me tho ds

The real data if formed by a set of 100 images of a human thyroid with

128 × 128 pixels. Fig.10 shows the corresponding histogram. This histogram

reveals some significant differences from the one of the synthetic data. In the

case of the synthetic data the underlying 3D object is binary while in the case

of the real data a continuous range of reflectivity values are admissible.

1
T he se v a lue s de pe nd o n the numbe r a nd dime nsio ns o f the ima g e s a nd o n the de sire d

a c c ura c y fo r the so lutio n. F o r v e ry a c c ura te so lutio ns it is ne e d mo re ite ra tio ns a nd

the line a r me tho d be c o me s mo re e ffic ie nt



F ig. 7. L(U ) a lo ng the ite ra tiv e pro c e ss

F ig. 8. L(U ) a lo ng the ite ra tiv e pro c e ss in func tio n o f time



F ig. 9. Re c o nstruc te d v o lume s, a )using the no nline a r me tho d a nd b) using the line a r

me tho d

Profiles extracted from both estimated volumes are shown in Fig.11. In this

figure are also shown images belonging to the initial data set. The profiles were

computed from images extracted from the estimated volumes with dimensions

and positions equivalent to the cross-sections shown in the figure. In this graph it

is also shown a profile extracted from a maximum likelihood estimates computed

by using the expression (16). Here, the difference between both methods are

more visible which is related with the deviation of the real data from the true

Rayleigh model. However, we conclude once more that the linear method leads

to acceptable results, similar to the ones obtained with the nonlinear algorithm.

6 Conclusion

This paper presents an algorithm to estimate the acoustic reflectivity in a given

region of interest from a set of ultrasound images. The images are complemented

with the position and orientation of the ultrasound probe. The proposed algo-

rithm is formulated in a Bayesian framework using a MAP criterion. To speed

the reconstruction time a simplified (linear) algorithm was proposed based on

the concept of sufficient statistics.

The goal is obtain a fast and efficient MAP algorithm to estimate volumes

in a quasi real time basis. Reconstruction results obtained with both methods

are presented, one using a set of images extracted from a synthetic 3D cube and

the other using a set of real cross-sections of a human thyroid. Both examples



F ig. 10. Re a l da ta histo g ra m

F ig. 11. Pro file s e x tra c te d fro m the e stima te d v o lume s using the no nline a r a nd line a r

me tho d



show that the fast(linear) algorithm performs almost as well as the nonlinear

version. Profiles extracted from the estimated volumes are quite similar and the

signal to noise ration (for the synthetic case only) computed with the original

volume reenforce this similarity. It is concluded that the linear algorithm needs

more iterations to reconstruct the volume than the nonlinear one but it spend

mutch less time. This is explained by the fact that the linear method only has

to process the huge amount of data only once, while the nonlinear method must

read and process the data in each iteration. A final note should be provide. The

formulation of the linear method is more simple than the nonlinear method.

The estimation process in the first case is obtained by solving a set of linear

equations while in the non simplified case a set of non-linear equations should

be solved. The nonlinear method present problems of convergence and stability,

that are not addressed in this paper, which are also solved by using the linear

reconstruction method proposed in this paper.
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