A Fast MAP Algorithm for 3D Ultrasound
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Abstract. Bayesian methods have been avoided in 3D ultrasound. The
multiplicative type of noise which corrupts ultrasound images leads to
slow reconstruction procedures if Bayesian principles are used. Heuristic
approaches have been used instead in practical applications.

This paper tries to overcome this difficulty by proposing an algorithm
which is derived from sound theoretical principles and fast. This algo-
rithm is based on the expansion of the noise probability density function
as a Taylor series, un the vicinity of the maxinmum likelihood estimates,
leading to a linear set of equations which are easily solved by standard
techniques. Reconstruction examples with synthetic and medical data
are provided to evaluate the proposed algorithm.
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1 Introduction

This paper addresses the problem of 3D ultrasound. 3D ultrasound aims to
reconstruct the human anatomy from a set of ultrasound images, corresponding
to cross-sections of the human body. Based on this information, the idea is to
estimate a volume of interest for diagnosis proposes. This technique is wide
spread due essentially to its non invasive and non ionizing characteristics [1].
Furthermore, the ultrasound equipment is less expensive than other medical
modalities, such CT, MRI or PET [2,3]. One way to perform 3D ultrasound
is by using 2D ultrasound equipment with a spatial locator attached to the
ultrasound probe, giving the position and orientation of the cross-section along
the time(see Fig.1). The estimation algorithm should fuse these information,
image and position, to estimate the volume.
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Fig. 1. 3D ultrasound acquisition system

Traditionally ultrasound imaging technique is made in real time using the
B-scan mode. The inspections results are visualized in real time being allowed
to the medical doctor to choose the best cross sections for the diagnosis. In 3D
ultrasound this goal is much more difficult to achieve since the amount of data is
much higher. However, reconstruction time should be kept as small as possible.
This is the reason why a lot of algorithms used in 3D ultrasound are designed
in ad hoc basis [4, 5], aiming to be as simple and fast as possible.

Bayesian approaches in 3D ultrasound have been avoided since these methods
are usually computationally demanding. In this paper we present an algorithm
for 3D ultrasound designed in a Bayesian framework. Its theoretical foundation is
presented as well the simplification procedures and justifications in order to speed
up the reconstruction process. Our goal is to designed an efficient reconstruction
algorithm to work in a quasi real time basis, while keeping a solid theoretical
foundation.

This paper is organized as follows. Section 2 describes the problem of 3D
reconstruction and the notation adopted in this paper. Sections 3 and 4 present
two algorithms for 3D reconstruction: the standard solution and a fast algorithm.



Section 5 present experimental results with synthetic and real data using both
algorithms. Finally section 6 concludes the paper.

2 Problem Formulation

This section describes the reconstruction of a 3D function f from a set of ultra-
sound images. Additional details can be found in [6].
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Fig. 2. Volume and image coordinates

Let us consider a scalar function f(z) defined in 2 C R?,i.e., f: 2 — R. We
assume that this function is expressed as a linear combination of known basis

functions, i.e.,
fz) = Zbg(x)ug (1)
g

where ui,us, ..., un are the unknown coefficients to be estimated and b(x;) are
known basis functions centered at the nodes of a 3D regular grid. Let {y;} be
a set of intensity data points, measuring f(z) at locations {z;}, belonging to
one of the inspection planes. It is assumed that intensity measurements, y;, are
corrupted by multiplicative noise and the goal is to estimate f(x) based on the
observations {y;}.

This estimation problem can be formulated in a Bayesian framework using
a MAP criterion, as follows: given a set of data ¥ = {y;} with a distribution
p(Y|U) which depends on the unknown parameters, U = {u,} with a prior
distribution p(U), estimate U in order to maximize the joint probability density
function of the data and parameters, p(Y,U), i.e.,

0 = arg maxlog(p(Y |U)p(U) (2)



In this paper we assume that all the elements of Y are i.i.d. (independent
and identically distributed) [8] with a Rayleigh distribution [9], i.e.,

log p(Y |U) = Z{log - —ny(;i)} (3)

where f(z;) is the value of the function to be reconstructed f at x;.
The prior used is gaussian [10], i.e

(U — %eﬂp Do, 0 (ug—ugs)® (4)

where ugy; is a neighbor of u, and 7 is a normalization factor.
Therefore, the objective function can be expressed as

LU) = UU) +q(U) ()

where [ = log p(Y/U) is the log likelihood function of the data and g = log p(U)
is the logarithm of the prior associated to the unknown parameters.

To optimize (5) the ICM algorithm proposed by Besag [7] is used. The ICM al-
gorithm simplifies the optimization process by optimizing the objective function
with respect to a single variable at a time, keeping the other variables constant.
Each step is a 1D optimization problem which can be solved in a number of
ways. This step is repeated for all the unknown coefficients in each iteration of
the ICM algorithm.

To optimize (5) with respect to a single coefficient u,, the stationary equation,

ouy) | 9q(U)

8up Ouy,

~0 (6)

is numerically solved.

The next sections present two approaches to compute (6). Section 3 attempts
to solve this equation using nonlinear optimization methods. Section 4 presents a
fast algorithm based on the solution of a linear set of equations. The second per-
form some simplifications in order to speed up the computations. Both methods
are iterative.

3 Nonlinear method

Let us first compute the derivatives of [ and g¢.
After straightforward manipulation it can be concluded that

- Z w2 o) (")

8up

where the sum is performed for all data points that are in the neighborhood
[~ A, A]? of the p-th node. In fact, each data point contributes to the estimation
of its 8 neighboring coefficients (see Fig.3).



Fig. 3. Neighboring nodes of a data point.

It is also easy to concluded that

9q(U) _
L — 2N, () ¥
where N, is the number of neighbors of u, (N, = 6) and @, is the average

intensity computed using the N, neighbors.
To optimize the objective function a set of non-linear equations should be
solved,

% Z(W%(xl)) — 2Ny (up —ap) =0 (9)

This is an huge optimization problem, which must be solved using numerical
methods. The ICM algorithm proposed by Besag [7] is used and each equation
is numerically solved by using the Newton-Rapson method assuming that the
other coefficients, uy, k # p are known. The computation of the solution of (9)
is computationally heavy, presenting some undesirable difficulties.

First, it would be nice to factorize the equation in two terms, one depending
only on the data and the other depending on the unknown to estimate,

hup)gr (V)ri (U {up}) + g2 (Y)ra(U\ {up}) +C =0 (10)

where ¢1(Y) and g2(Y") are sufficient statistics. This formulation would allow
to concentrate the influence of the observed data on a small set of coefficients,
computed once for all at the first iteration and kept unchanged during the op-
timization process. Data processing would be done only once speeding up the
estimation process.

Unfortunately, it is not possible to write (9) in the form of (10), i.e., there
are no sufficient statistics for the estimation of the interpolating function f.
This means that all the data must be read from the disk and processed in each
iteration of the nonlinear reconstruction algorithm. This is a strong limitation



when a large number of cross-sections is involved, e.g., 1000 images with 640 x480
pixels will lead to 3072¢5 pixels, preventing a wide spread use of this algorithm.

Another important difficulty concerns the stability of the convergence pro-
cess. The system of equations (9) is non-linear. The stability of the numerical
methods used to solve it, strongly depends on the data and on the regularization
parameter, ¢, and on the initial estimates of U. The process of finding the right
parameters to obtain acceptable reconstructions is in general often done by trial
and error.

To overcome these difficulties an approximation approach is proposed in the
next section.

4 Linear solution
Let us develop {(U) in Taylor series about the maximum likelihood estimates,
UML7

N 8l(u£4L)

Juy,

ML lagl(ugjn\“)

U(p) = U(u)™) (1 — w4 5y — P e (1)

the first derivative of {(U) with respect to u, is

o) O (ud')

ML
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where it was assumed that —5;>— = 0 since by definition Uy is a stationary
P

point of I(U). The residue € was discarded for convenience.
Thus (6) takes the form

oLWU) O (ud')

ML Sy
ou, ~ 8u129 (up — Up ) = 2¢Ny(up — @p) =0 (13)
leading to
U, = ! WMLy v g (14)
Py, P 1+7, 7
where 7, = *_azz(ii\%)v\aug

Equations show that the MAP estimation can be seen as a linear combination
of the ML estimates with the average intensity computed in the neighborhood
of each node.

Let us compute the maximum likelihood estimation of U.

Assuming that f(x) changes slowly in the neighborhood of each node, i.e.,
f(z;) =~ up will be used in (7) to obtain

T = 3 S 0e) e 0 19)

Py




Solving with respect to uéw L leads to

ML 121(%2%(%))
T2y () (16)

and by deriving (15) in order to u, leads to

821(u£4L) 721 bp (1)

8u% o (uéw Ly?

(17)

This expression for the second derivative of the log likelihood function, ob-
tained by deriving (15) with respect to u,, can be more accurately computed
if (7) is used. By deriving two times (7) with respect to u, and after replacing
f(z;) by up it obtains:

U(up™) 3 (yibp(mi))® | b5 (wi)
N O B O i

We have used expression (17) in the reconstruction using synthetic data and (18)
in the case of real data.
Therefore, the MAP estimate of the volume of interest is obtained by solving

a system of linear equations given by (14) where 7, = %(uyﬂg and
i opATE
where uéWL is given by(16).

For sake of simplicity (14) can be rewrite as

up = kp + cplip (19)
ui\)/[L Tp
147 147
once for all during the initialization phase. The solution of (14) can be done by
standard algorithms for the solution of linear sets of equations.

where k, = and ¢, = . These parameters, k, and ¢, are computed

5 Experimental Results

This section presents two 3D reconstruction examples using synthetic and real
data.

The synthetic data consists of a set of 100 images of 128 x 128 pixels cor-
responding to parallel cross sections of the 3D interval [—1,1]* (see Fig.4).
The function to be reconstructed is assumed to be binary: f(z) = 5000,z €
[-0.5,0.5%, f(z) = 2500 otherwise. The cross sections were corrupted with
Rayleigh noise according to (3). The histogram of the whole set of images is
shown in Fig.5 and is a mixture of two Rayleigh densities. Both reconstruction
algorithm were used to reconstruct f in the interval [—1,1]% using a regulariza-
tion parameter v = 16.107°.

Fig.6 shows the profiles extracted from the estimated volumes using both
methods. These two profiles are quite similar which means that both methods
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Fig. 4. Cross sections extracted from a synthetic 3D cube
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Fig. 5. Synthetic data set histogram



lead to similar results in this problem. The SNR of 21.4dB for the nonlinear
method and 20.8dB for the fast algorithm proposed in this paper stresses the
ability of the linear algorithm to produce similar results as those obtained with
the nonlinear method.

It should be stressed that the linear method is less heavy in computational
terms. Fig.7 and Fig.8 show the evolution of the posteriori distribution function,
log(p(Y,U)) along the iterative process. Fig.7 displays log(p(Y,U)) as function
of the index of the iteration while Fig.8 displays the same values as function of
the time.

The nonlinear algorithm converges in less iterations(62) than the linear algo-
rithm(97) in this example. However, since each iteration of the nonlinear method
is slower and it involves processing all (millions) of the observations, the conver-
gence is slower in terms of computation time (see Fig.8) (in this case about 6
times slower than the linear method 1).

Fig. 9 shows cross sections of the 3D volume (left) as well as the 3D surface
of the cube displayed using rendering methods (right). The results are again
similar, the nonlinear method performing slightly better at the transitions.
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Fig. 6. Profiles extracted from the original volume and from the estimated volumes
using the nonlinear and linear methods

The real data if formed by a set of 100 images of a human thyroid with
128 x 128 pixels. Fig.10 shows the corresponding histogram. This histogram
reveals some significant differences from the one of the synthetic data. In the
case of the synthetic data the underlying 3D object is binary while in the case
of the real data a continuous range of reflectivity values are admissible.

! These values depend on the number and dimensions of the images and on the desired
accuracy for the solution. For very accurate solutions it is need more iterations and
the linear method becomes more efficient



x10
-5.02
-8.03
el
-8.03 / /
-8.06 I/
-8.07 /
-58.03
Iterations
— Nonlinear — Linear
Fig. 7. L(U) along the iterative process
-5.02 x1 06
-8.03 —-
-8.04 //
-8.05
-8.06
-8.07
-5.08
time
— Nonlinear — Linear

Fig. 8. 1.(U) along the iterative process in function of time



Fig. 9. Reconstructed volumes, a)using the nonlinear method and b) using the linear
method

Profiles extracted from both estimated volumes are shown in Fig.11. In this
figure are also shown images belonging to the initial data set. The profiles were
computed from images extracted from the estimated volumes with dimensions
and positions equivalent to the cross-sections shown in the figure. In this graph it
is also shown a profile extracted from a maximum likelihood estimates computed
by using the expression (16). Here, the difference between both methods are
more visible which is related with the deviation of the real data from the true
Rayleigh model. However, we conclude once more that the linear method leads
to acceptable results, similar to the ones obtained with the nonlinear algorithm.

6 Conclusion

This paper presents an algorithm to estimate the acoustic reflectivity in a given
region of interest from a set of ultrasound images. The images are complemented
with the position and orientation of the ultrasound probe. The proposed algo-
rithm is formulated in a Bayesian framework using a MAP criterion. To speed
the reconstruction time a simplified (linear) algorithm was proposed based on
the concept of sufficient statistics.

The goal is obtain a fast and efficient MAP algorithm to estimate volumes
in a quasi real time basis. Reconstruction results obtained with both methods
are presented, one using a set of images extracted from a synthetic 3D cube and
the other using a set of real cross-sections of a human thyroid. Both examples
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Fig.11. Profiles extracted from the estimated volumes using the nonlinear and linear
method



show that the fast(linear) algorithm performs almost as well as the nonlinear
version. Profiles extracted from the estimated volumes are quite similar and the
signal to noise ration (for the synthetic case only) computed with the original
volume reenforce this similarity. It is concluded that the linear algorithm needs
more iterations to reconstruct the volume than the nonlinear one but it spend
mutch less time. This is explained by the fact that the linear method only has
to process the huge amount of data only once, while the nonlinear method must
read and process the data in each iteration. A final note should be provide. The
formulation of the linear method is more simple than the nonlinear method.
The estimation process in the first case is obtained by solving a set of linear
equations while in the non simplified case a set of non-linear equations should
be solved. The nonlinear method present problems of convergence and stability,
that are not addressed in this paper, which are also solved by using the linear
reconstruction method proposed in this paper.
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