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ABSTRACT

This paper describes an algorithm for the reconstruction of 3D medical objects from ultrasound images complemented with
measurements of the sensor location. Reconstruction is performed by filtering and interpolating the available data using
an optimal Bayesian criterion. The object is represented by a function, belonging to a finite dimension vector space and a
Rayleigh model is adopted to describe the image formation process.

1. INTRODUCTION

Ultrasound techniques play a key role in medicine since they allow non invasive and non ionizing measurements of the organs
geometry and motion [1]. To obtain an image an ultrasound beam is applied to the human body and the echo amplitude
is measured and displayed. The ultrasound image is built by representing the received echos along different ray directions.
Since all scanning rays belong to the same plane, each ultrasound image represents a cross section of the human body
along an inspection plane. This scanning mode is denoted by B-mode scan. A current research goal is the use of ultrasound
methods for 3D reconstruction and visualization of human tissues and organs [4, 5, 3]. Two difficulties have to be considered:
image noise and the estimation of the sensor location. Ultrasound imaging has poor signal to noise ratio due to the presence
of speckle noise (multiplicative noise) and due to the distortion introduced by the acquisition system. Sensor position is
measured by an external device (e.g., an electromagnetic locator) but measurement errors can not be negleted since they
degrade the reconstruction results.

This paper addresses the 3D reconstruction of medical objects from a set of ultrasound images representing cross
sections of the body, taken from different positions and orientations. The images were obtained with a free-hand echo-
graphic equipment complemented with a spatial locator attached to the ultrasound probe, giving the current position and
orientation of the scanning plane. The experimental set up is described in [8]. It is assumed in this paper that the sensor
position and orientation are accurately known and therefore no measurement errors are considered. This is not always true.
Location errors my produce significant misalignment of the inspection planes, degrading the reconstruction results. We have
carefully selected image sequences where these errors are small. A Bayesian approach using a MAP criterion is adopted
to reconstruct the 3D tissue information. The echo magnitude is modeled as a random variable with Rayleigh distribution
[6, 7], suggested by the image formation process. A Gibbs distribution is used for incorporating the prior knowledge about
the unknowns parameters [9, 11]. The prior improves the parameter estimation and introduces a regularization effect which
helps the convergence of the estimation algorithm.

The estimation of the tissue properties inside a region of interest can be considered as an interpolation problem where
an unknown function is estimated from a set of noisy and sparse observations. Not all points of the volume of interest are
intersected by images planes. Therefore, it is necessary to fill the gaps. A second case can also occur. Some regions are
sometaimes intersected by more than one plane. The corresponding images should therefore be combined to improve the
estimates [2]. This operation is often denoted as spatial compounding [6, 12].

The proposed method is evaluated using synthetic and medical data.

2. PROBLEM DESCRIPTION
It will be assumed that the funcpion f describing the acoustic properties of human tissues belongs to a class of admissible
functions defined in a set, Q C R, i.e., f : @ — R. Furthermore, it is assumed that the set of admissible functions is a finite

dimension vector space F with known basis functions, b; : 2 — R. Therefore, each function f € F can be expressed as a
linear combination of the basis functions,

f@) =) bi(@)u (1)

where w1, ug, ..., un are the coefficients to estimate. Using matrix notation, f(z) can be written as follows:



Figure 1: Scanning planes.

f(z) = B(z)"U (2)

where B(x) = [bi(x),b2(z), ...,bn(z)]T is a vector of basis functions and U = [u1, usg,...,un]’ is a Nx1 vector of co-
efficients. The problem addressed in this paper can be stated as follows: we want to estimate f(z), given a sequence
of ultrasound images, with known sensor positions and orientations. This sequence is used to form a set of data points,
V = {v;}, with v; = (s, z:), where y; measures the reflexivity at location z; € R3. Tt is assumed that each b; (z) is a local
function obtained by shifting a known function h : R®* — R, i.e.,

bi(z) = h(z — i) (3)
where 1; € R? is the i-th node of a 3D cubic grid (see Fig. 2) defined in Q (the grid step is A), and h(z) is a tri-linear
interpolation function defined by:

h(z) = {Hf’zl(l—%) el (4)
0 otherwise
where 2* is the i-th coordinate of x and § = [-A, A]®.

The grid defines a partition of € into cubic voxels. Each basis function has a finite support formed by 8 voxels and
each 3D point belongs to 8 support regions (See Fig. 2). Therefore to compute f(zo) defined in (2) only 8 coefficients
are needed since all other basis functions are zero at * = xg. The estimation of the unknowns coefficients U, given a set
of observations, V, can be formulated as a Bayesian estimation problem. Adopting the MAP[15] method this leads to the
following optimization problem:

U = arg maxIn(p(Y [U)p(U)) (5)

where p(V|U) is obtained using the sensor model and p(U) is the prior. This formulation leads to a huge non convex
optimization problem which will be solved using numeric methods [14].

2.1. Sensor Model

It is assumed that the observations consist of a set of 2D images obtained by intersecting the volume with non parallel plans
defined by the sensor position and orientation (see Fig.1). Therefore, additional hypothesis must be made to estimate f in
Q.

There are three main sources of errors in this system: sensor position errors, tissue movement and deformation during
data acquisition and intensity measurements errors. Only the third type of errors will be considered in this work. It will be
assumed that the sensor orientation and location is accurately measured and that the observed organs do not move during
the acquisition process. This is not true in general. Sensor position errors may cause significant misalignment of the cross
sections. Organ motion and deformation is also a relevant issue. Recent research has addressed this problem in order to
improve the robustness of the estimation process [13].

In this paper, pixel intensities are considered as realizations of independent random variables with Rayleigh distribution
[6]. Statistical independence of all elements of Y is assumed because the point spread function of the acquisition system is
smaller than the inter-pixel distance. Therefore, the likelihood function is given by
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Figure 2: 3D grid of points.

V1) = [[4505¢ 70 (6)

where f(z) is the mean intensity of the back scattered radiation at x € 2. The parameter of the Rayleigh distribution
is the mean square value of the amplitude of all sinusoids arriving at the sensor from each resolution cell.

2.2. Prior Model

Not all the U vectors occur with the same probability. The available knowledge about the spatial properties of human
organs and tissues can be used to define a prior distribution. In this work, a Gibbs prior is adopted [9], based on a set of
quadratic potential functions. The potential functions are used to guarantee the smoothness of the spatial coefficients. This
introduces a regularization effect which allows to recover the unknown coefficients even when there is no data in a given
region. In addition, regularization also improves the convergence of the optimization algorithm. The prior distribution used
in this paper is given by

—Q A —Q Ui —Uj 2
p(U) = %e Z(m‘)er Filus) _ %e Z(iu‘)er( i) (7)

where T is the set of all pairs of grid indices (7, ) such that ||z; — z;|| < A,i # j (See Fig.2), and Z is a normalization
factor. Each grid node is connected to 6 neighbors, except boundary nodes. The a parameter measures the strength of
each connection. High values of « correspond to strong connections between neighboring nodes (differences receive a high
penalty) while low values of a correspond to weak connections. It is often convenient to assume that « varies during the
optimization process, starting with a high value which is gradually reduced.

3. PARAMETER ESTIMATION

Parameter estimation is performed using the MAP method. This leads to the maximization of the joint density p(Y,U)
given by:

H ok Tt ) L Dy Ti4) (8)

The maximization of p(Y,U) with respect to U is a difficult problem since the number of parameters to estimate is
very large (typically thousands of coefficients) and p(Y,U) is a non convex function. Simpler expressions are obtained by
maximizing Inp(Y, U),but the main difficulties remain.

Several methods are available to deal with large scale optimization problems, which fit in two broad categories: stochastic
algorithms and deterministic algorithms. The ICM algorithm proposed by Besag is used in this paper [10]. The ICM



algorithm simplifies the optimization process by optimizing the objective function with respect to a single variable at a time,
keeping the other variables constant[9]. Each step is a 1D optimization problem which can be solved in a number of ways.
This step is repeated for all the unknown coefficients in each iteration of the ICM algorithm.

To optimize (8) with respect to a single coefficient u, the following stationary condition must be met,

8%7 Inp(Y/U) + a%, Inp(U) = 0 )

Using the prior (7) and sensor model (6) the stationary condition is written as

1 y? — 2f () _
Up = bp(zi) + 1 10
) D Tew el R (10)
3
where 4, is the average value of the neighboring coefficients. This equation suggests an iterative procedure to compute
Uy, known as fixed point algorithm. Convergence is guaranteed if the right hand side is a contraction. In this paper, a single
iteration is performed to update the unknown coefficient u, in each iteration of the ICM algorithm.

4. EXPERIMENTAL RESULTS

The Rayleigh reconstruction algorithm was tested with synthetic and real data. Fig. 3 shows the results of a numerical
test performed with synthetic data. The function to reconstruct is binary: it takes a value 0.75 in the interval [—0.5,0.5]%
and 0.25 outside. A grid of 101x101x101 nodes was used to approximate this function f in the interval [—1,1]>. The
measurements used in this example consist of 50 images obtained by cutting f along non parallel planes and corrupting the
cross sections with Rayleigh multiplicative noise, according to (6). Figs. 3a-d), show two cross sections of f and the synthetic
images generated by the Rayleigh model. Figs. 3e-f) show the corresponding cross sections of the reconstructed function,
fr. The SNR of the reconstructed function is 13.5 dB. Since the whole volume is estimated, it is possible to obtain new
cross sections with arbitrary orientations. Figs. 3g-h) illustrate this operation by showing new cross sections obtained from
the reconstructed volume. Fig. 3i-j) give an overall view of the reconstructed function visualized by ray casting. Similar
experiments were performed with real data using a set of 62 us images of a gall bladder. The results are shown in Figs. 4.
The reconstructed cross sections show a close similarity with the observed images, except for the blurring effect which occurs
at the transitions. In this case, there is no ground truth to compute the SNR as we did before. The 3D reconstruction of
the organ surface obtained by thresholding and ray casting is shown in Fig. 4g-h).

5. CONCLUSION

An algorithm for 3D reconstruction of organs from a sequence of ultrasound images is described. It is assumed that the
probe position and orientation are known, e.g., obtained using a electromagnetic location system. The proposed algorithm
retrieves the spatial distribution of the tissue reflectivity by filtering and interpolating the available data points.

The tissue reflectivity is approximated by a linear combination of basis functions defined on a set Q@ C R>. Since
the basis functions are known only, the coefficients have to be estimated. The estimation of the unknown coefficients is
performed in a Bayesian framework assuming a Rayleigh distribution for the observations and a Gibbs prior for the unknown
coefficients. The use of the Rayleigh model is suggested by physical considerations about the image formation process and
by the multiplicative type of noise observed in ultrasound images (speckle). The reconstruction algorithm was tested using
synthetic and real data. The synthetic data consists of cross sections of a cube and the real data is a set of ultrasound
images of a gall bladder obtained during a medical exam. Good results were achieved in both cases.
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Figure 4: a-b) ultrasound images of a gall bladder, c-d) reconstructed planes; e-f) new planes of the reconstructed volume,
g-h) 3D reconstruction of the gall bladder
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