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Abstract

This paper describes an algorithm for the reconstruction of 3D medical objects from ultrasound images. Recon-

struction is performed by ®ltering and interpolating the available data using an optimal Bayesian criterion. A Rayleigh

model is adopted to describe the image formation process. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ultrasound imaging has a widespread use in
medicine, e.g., in pre-natal and cardiology diag-
nosis. Its popularity stems from the fact that it is a
low cost, non-ionizing and non-invasive technique
(Quistgaard, 1997). Furthermore, it allows an in-
teractive visualization of the anatomic structures
which is not possible in other more expensive and
sophisticated techniques such as CT, MRI or PET.
The main weaknesses of ultrasound imaging are
related to the low spatial resolution of the images
and with the presence of multiplicative noise
(speckle) generated by the interaction of the
acoustic wave with the tissues.

Currently, most ultrasound exams are per-
formed using the so-called B-mode scan which

provides images of cross-sections of the human
body along inspection planes de®ned by the doc-
tor. 3D ultrasound, i.e., the reconstruction of 3D
information from ultrasound data is not a wide-
spread technology yet but it is receiving consider-
able attention since it provides additional
information about the organs geometry and
therefore allows an easier interpretation of the
available data. The problem of 3D ultrasound can
be formulated as follows: given a set of 2D ultra-
sound images corresponding to cross-sections of
the human body, a 3D volume of data should be
reconstructed. In most cases it is assumed that the
images are obtained using conventional free-hand
ultrasound equipment complemented with a spa-
tial locator which measures the position and ori-
entation of the ultrasound probe at each instant of
time (Nelson et al., 1999). This information char-
acterizes the inspection plane associated with each
image as shown in Fig. 1.

There are two approaches for 3D reconstruc-
tion: surface based and volume based methods
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(Nelson et al., 1999). The ®rst approach tries to
estimate the organs surfaces from features detected
in the ultrasound images (e.g., contours) (Raya
and Udupa, 1990; Tagore, 1999; Treece et al.,
1999). Therefore, only the organ's surface is re-
constructed in this approach. Deformable surface
models have also been used for surface estimation
in medical applications (e.g., see McInerney and
Terzopoulos, 1996; Delingette, 1998). The second
approach is based on the estimation of the whole
volume of data. A cuberille model is usually
adopted (Chen et al., 1985) i.e., the 3D space is
divided in cubic cells each of them characterized by
an intensity to be estimated. The estimation pro-
cess is usually performed in two steps (Rohling
et al., 1999): bin ®lling and hole ®lling. The ®rst is
a noise reduction operation. It combines the in-
formation of the planes which intersect each voxel.
The second step is an interpolation operation since
it assigns a value to the voxels which were not
observed during the medical exam. Several meth-
ods have been proposed for the interpolation step
e.g., the voxel nearest neighbor (VNN), pixel
nearest neighbor (PNN), the distance weight in-
terpolation (DW) and radial basis function inter-
polation (RBF). A detailed survey of these
methods can be found in (Rohling et al., 1999).

This paper addresses volume reconstruction
using a set of ultrasound images and a statistical
method of reconstruction (Herman and Kuba,

1999; Gooley and Barret, 1992). Unlike previous
approaches, we propose a joint performance of
noise reduction and image interpolation. Further-
more, instead of using di�erent criteria, both op-
erations optimize the same objective function. It is
assumed that the function to be estimated belongs
to a vector space with known basis functions dif-
ferent from the cubic support and constant basis
functions used in the cuberille model. The un-
known coe�cients are obtained by Bayesian esti-
mation methods which account for the noise
reduction and image interpolation e�ects which
were previously described. Furthermore, a non
Gaussian (Rayleigh (Burckhardt, 1978)) model is
adopted to describe the multiplicative type of noise
observed in ultrasound data.

The paper is organized as follows. Section 2
formulates the reconstruction problem. Section 3
describes the parameter estimation methods. Sec-
tion 4 presents an experimental evaluation of the
reconstruction algorithm with synthetic and med-
ical data and Section 5 concludes the paper.

2. Problem formulation

It will be assumed that the function f describing
tissue re¯ectivity belongs to a class of admissible
functions de®ned in a spatial domain, X � R3, i.e.,
f : X! R. Furthermore, it is assumed that the set
of admissible functions is a ®nite dimension vector
space F with known basis functions, (bi : X! R).
Each function f 2 F can be expressed as a linear
combination of the basis functions,

f �x� � B�x�TU ; �1�

where B�x� � �b1�x�; b2�x�; . . . ; bN�x��T is a vector
of basis functions and U � �u1; u2; . . . ; uN �T is a
N � 1 vector of coe�cients. The problem ad-
dressed in this paper can be stated as follows: we
want to estimate f, given a sequence of ultrasound
images, with known sensor positions and orienta-
tions. This sequence is used to obtain a set of data
points, V � fvig, with geometric and intensity in-
formation i.e., vi � �yi; xi�, where yi is the intensity
measured by the ultrasound probe at the position
xi 2 R3. It is assumed that each bi is a local

Fig. 1. Scanning geometry.
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function obtained by shifting a known function
h : R3 ! R, i.e.,

bi�x� � h�xÿ li�; �2�

where li 2 R3 is the position of the ith node of a
cubic regular grid (see Fig. 2) de®ned in X. In this
paper it will be assumed that h is a tri-linear in-
terpolation function de®ned by:

h�x� �
Q3

i�1�1ÿ jx
ij

D �; x 2 d;
0; otherwise;

�
�3�

where xi is the ith coordinate of x, D is the grid step
and d � �ÿD;D�3.

The grid de®nes a partition of X into cubic
voxels. It can be concluded from (2) and (3) that
each basis function bi has a ®nite support region of
eight voxels and each 3D point belongs to eight
support regions. Therefore to compute f �x0� de-
®ned in (1) only eight coe�cients are needed since
all other basis functions are zero at x � x0.

The estimation of the unknowns coe�cients U,
given a set of observations, V, can be formulated
in a Bayesian framework. Adopting the MAP
method this leads to the following optimization
problem:

Û � arg max
U

ln�p�Y jU�p�U��; �4�

where p�V jU� is the sensor model and p�Y jU� is
the prior (Ripley, 1996). This formulation leads to
a huge optimization problem that must be ad-
dressed using numeric methods.

2.1. Observation model

The observations consist of a set of 2D images
obtained by intersecting the volume with plans
de®ned by the sensor position and orientation (see
Fig. 1). The volume model is to be estimated from
this set of incomplete information (there are points
in X which are not intersected by any plan). Fur-
thermore, the intensity measurements are cor-
rupted by multiplicative noise (speckle). This noise
is produced during the image acquisition process
being caused by the interaction of the acoustic
wave with the tissues and the ultrasound probe
surface (Abbot and Thurstone, 1979). The analysis
of the physics associated with the ultrasound
propagation and interaction with tissues suggests
that the echo intensity measurement with the ul-
trasound probe has a Rayleigh distribution
(Shankar, 1986; Corsini et al., 1996; Cramblitt and
Parker, 1999; Keyes and Tucker, 1999; Jakeman
and Pusey, 1976). The ultrasound images pro-
duced by commercial equipment are usually ob-
tained after a nonlinear pre-processing stage which
modi®es the distribution of the received echo.
However, the intensity variations have a non-
Gaussian distribution which can be approximated
by a Rayleigh distribution as before.

In this paper, pixel intensities are considered as
realizations of independent random variables.
Statistical independence of all elements of Y is
assumed because the point spread function (PSF)
of the image acquisition system is smaller than the
inter-pixel distance (Dias and Silva, 1998). With
this assumption the likelihood function is given by

p�Y jU� �
Y

i

p�yijU�: �5�

To derive the observation model using a Rayleigh
distribution for the data, we assume a large
number of scatters per resolution cell withFig. 2. 3D grid of points.
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approximately the same magnitude, no specular
re¯ectors and a ultrasound probe which is pressure
sensitive (Shankar, 1986; Abbot and Thurstone,
1979). In this case, it is assumed that the parameter
of the Rayleigh distribution is equal to f �x� and
consequently the likelihood function is

p�Y jU� �
Y

i

yi

f �xi� e
ÿ�y2

i =2f �xi��: �6�

2.2. Prior model

Three-dimensional ultrasound requires the in-
terpolation of measured data as well as noise re-
duction to reduce speckle. Some assumptions must
be made in order to interpolate the data between
the inspection planes. In a Bayesian framework
this information is included in the prior distribu-
tion Not all U vectors occur with the same prob-
ability. The available knowledge about the spatial
properties of human organs and tissues can be
used to de®ne a prior distribution. In this work, a
Gibbs prior is used, based on a set of quadratic
potential functions. These functions are used to
guarantee the smoothness of the spatial coe�-
cients. This introduces a regularization e�ect
which allows to recover the unknown coe�cients
even when there is no data in a given region. In
addition, regularization also improves the con-
vergence of the optimization algorithm. The
adoption of a Gibbs distribution is equivalent to
considering U as a Markov random ®eld as stated
in the Hammersley±Cli�ord theorem (Geman and
Geman, 1984; Li, 1998). The prior distribution is
given by

p�U� � 1

Z
e
ÿa
P

�i;j�2C Pi�uj� � 1

Z
e
ÿa
P

�i;j�2C�uiÿuj�2
; �7�

where C is the set of all pairs of grid indices �i; j�
such that kxi ÿ xjk6D (see Fig. 3) and Z is a
normalization factor. Each grid node is connected
to six neighbors, except boundary nodes. The a
parameter measures the strength of each connec-
tion. A high value of a correspond to strong con-
nection between neighboring nodes (di�erences
receive a high penalty) while low values of a cor-
respond to weak connections. It is often conve-
nient to assume that a varies during the

optimization process, starting with a high value
which is gradually reduced.

3. Parameter estimation

This section addresses the estimation of the
unknown coe�cients using the Rayleigh observa-
tion model. Parameter estimation is performed
using the MAP method. This leads to the maxi-
mization of the joint density p�Y ;U� given by

p�Y ;U� �
Y

i

yi

f �xi� e
y2

i =2f �xi�
� �

1

Z
e
ÿa
P

�i;j� Pi�uj�: �8�

The maximization of p�Y ;U� with respect to U is a
di�cult problem since the number of parameters
to estimate is very large (typically thousands of
coe�cients) and p�Y ;U� is a non-convex function
(Li, 1998). Simpler expressions are obtained by
maximizing ln p�Y ;U� but the key di�culties re-
main the same.

Several methods are available to deal with large
scale optimization problems, which ®t into two
broad categories (Press et al., 1994): stochastic
algorithms and deterministic algorithms. Stochas-
tic algorithms (e.g., simulated annealing) seek to
obtain a global maximum but they are time con-
suming and require a slow annealing schedule.
Deterministic algorithms do not guarantee
the convergence towards a global maximum.
However, they are often the most adequate choice

Fig. 3. Neighborhood representation.
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if a faster solution is required. The ICM algorithm,
introduced by (Besag, 1986) is the one used in this
paper. The ICM algorithm simpli®es the optimi-
zation process by optimizing the objective function
with respect to a single coe�cient at a time,
keeping the other coe�cients constant. This is a
1D optimization problem which can be performed
in a number of ways. This step is repeated for all
the unknown coe�cients in each iteration of the
ICM algorithm.

To maximize (8) with respect to a single coe�-
cient up the following stationary condition must be
met,

o
oup

ln p�Y =U� � o
oup

ln p�U� � 0 �9�

let us compute both terms of this equation. Dif-
ferentiating ln p�Y =U� with respect to up leads to
(see (6))

o
oup

ln p�Y =U� � 1

2

X
i

y2
i ÿ 2f �xi�

f 2�xi� bp�xi�; �10�

where bp�xi� � of �xi�=oup is the basis function
centered in lp. Di�erentiating the prior logarithm
leads to (see (7))

o
oup

ln p�U� � ÿ2aNv�up ÿ �up� �11�

with

�up � 1

Nv

X
ug2Ddp

ug; �12�

where Nv is the number of control points inside the
neighborhood dp of the pth grid node p�Nv � 6, see
Fig. 3). Replacing (10), (11) in (9) leads to:

1

4aNv

X
i

y2
i ÿ 2f �xi�

f 2�xi� bp�xi� ÿ up � �up � 0: �13�

Eq. (13) can be rewritten as follows,

up � 1

4aNv

X
i

y2
i ÿ 2f �xi�

f 2�xi� bp�xi� � �up �14�

which suggests an iterative procedure to compute
ûp. This method is known as ®xed point algorithm.
Convergence is guaranteed if the right-hand side is
a contraction. In practice, a single iteration is

performed to update the unknown coe�cient up in
each iteration of the ICM algorithm. Eq. (14) is
recursively applied to update all the coe�cients
until the norm of the update vector becomes
smaller than a given threshold.

The algorithm is initialized using a simple in-
terpolation method (pixel nearest neighborhood
interpolation (Nelson and Pretorius, 1997). This
algorithm provides an estimate of the mean in-
tensity �yp inside each voxel. Since the mean value
of a Rayleigh random variable is

�����������
pf =2

p
, an initial

value for up can be easily obtained by

up �
2�y2

p

p
: �15�

4. Experimental results

The Rayleigh reconstruction algorithm de-
scribed in the previous sections was tested with
synthetic and medical data. The results were
evaluated according to objective criteria and by
visual inspection. A comparison with two other
methods was performed. The methods used in
these tests were the PNN and the DW recon-
struction (Rohling et al., 1999).

Three ®gures of merit (FOMs) were used to
evaluate the estimated volume:
· signal to noise ratio

SNR � 10 log10

R jf0�x�j dxR jf �x� ÿ f0�x�j dx
; �16�

· mean absolute error

MAE � 1

N

XN

i�1

jyi ÿ f �xi�j; �17�

· log-likelihood function

LL � 1

N

XN

i�1

log
yi

f �xi�
� �

ÿ y2
i

2f �xi� : �18�

In these expressions sums are performed for all
the data points used for testing. N denotes the
number of test points and f0 denotes the true
function we wish to estimate. These FOM are
computed twice for each experiment. First we
compute the FOMs using all the data (integrals are

J.M. Sanches, J.S. Marques / Pattern Recognition Letters 21 (2000) 917±926 921



evaluated in the whole volume X). This provides
an overall evaluation of the reconstructed volume.
Then we compute the FOMs using the leave one
out method as suggested in (Rohling et al., 1999)
i.e., we reconstruct the volume using all the ob-
served planes except one and compute the FOMs
using the data of the image which was not used for
reconstruction. The process is repeated for all
other planes and average values are computed at
the end. The leave one out method allows to assess
the interpolation capability of the algorithms.
Please note that the SNR cannot be computed in
experiments with medical data since the true f0 is
unknown then.

Fig. 4 shows the results of a test performed with
synthetic data. The function to reconstruct is
binary: it takes a value 0.75 in the interval
�ÿ0:5; 0:5�3 and 0.25 outside. A grid of
65� 65� 65 nodes was used to approximate this
function f in the interval �ÿ1; 1�3. The measure-
ments used in this example consist of 65 images
obtained by cutting f along non-parallel planes
and corrupting the cross-section images with
Rayleigh multiplicative noise, according to (6).
Figs. 4(a) and (b) show two cross-sections of f0.
Figs. 4(c)±(f) show observed (noisy) and recon-
structed images obtained with the Rayleigh algo-
rithm. The last two images correspond to
unobserved planes. Fig. 4(i)±(j) gives an overall
view of the reconstructed function visualized by
ray casting. The details of ray casting algorithm
can be found in (Foley et al., 2000).

A comparison with the PNN and DW inter-
polation results can be found in Figs. 5 and 6 and
in Table 1. Fig. 5 shows reconstructed images
obtained by the three methods. The proposed al-
gorithm (Rayleigh model) manages to eliminate
the noisy appearance in the reconstructed images
keeping an acceptable edge representation. A more
detailed view can by obtained in Fig. 6 where re-
constructed pro®les obtained by the three methods
are shown. Again, the noise reduction performed
by the Rayleigh algorithm is clear.

Table 1 shows that the proposed algorithm
achieves better FOMs than the two other methods,
except in the case of the log-likelihood function.
This drawback is explained by the regularization
e�ect introduced by the prior. In fact, this di�-

culty would disappear if the a posteriori density
(which includes the prior) was used instead. A
comprarision with the RBF algorithm was not
performed due the complexity of this method.
However, the results presented in (Rohling et al.,
1999) sugest that the RBF method achieves a
comparable performance.

Fig. 4. (a) and (b) Ideal images without noise, (c) and (d) ob-

served images with Rayleigh noise, (e) and (f) reconstructed

images, (g) and (h) new cross-sections of the reconstructed

volume, and (i) and (j) 3D reconstruction of the cube.
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Similar experiments were performed with a set
of 62 ultrasound images of a gall bladder pro-
vided by the University of Cambridge in the
scope of SOLUS 3D project. A grid of
129� 129� 129 nodes was used to describe a
volume of 10� 10� 10 cm3. The grid dimensions

correspond to a trade o� between computational
time and accuracy. It was experimentally found
that no signi®cant improvement was achieved in
these experiments by adopting a denser grid.
The results are shown in Figs. 7 and 8 and in
Table 2.

Fig. 5. Reconstructed results: (a) ideal image, (b) observed image (Rayleigh noise); reconstructed images with (c) PNN, (d) DW, and

(e) Rayleigh reconstruction.

Fig. 6. Reconstructed results: (a) ideal pro®le; (b) measured data (Rayleigh noise); reconstructed pro®les with (c) PNN, (d) DW, and

(e) Rayleigh reconstruction.
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The reconstruction results presented in Fig. 7
show a close similarity with the observed images,
except for the blurring e�ect which occurs at the
transitions. Noise reduction is observed in the

reconstructed images stressing the ability of the
MAP algorithm in speckle elimination. The 3D
reconstruction of the organ surface obtained by
thresholding and ray casting is shown in Fig. 7(g)
and (h).

The comparison with the PNN and DW inter-
polation methods is shown in Fig. 8. 1 A small
visual improvement is achieved by the Rayleigh
method since the reconstructed images obtained
with this method are less noisy. This improvement
is corroborated by the objective measures dis-
played in Table 2. As it can be observed all FOMs
computed for the Rayleigh method are better than
the ones obtained for the other two algorithms (the
SNR was not computed since there is no ground
truth in this experiment).

5. Conclusion

A 3D reconstruction algorithm was described
based on a Rayleigh data distribution. This algo-
rithm provides a principled approach for the in-
terpolation and noise reduction of ultrasound
images which was validated by experimental tests.

Several research directions can be explored in
the future. No attempt was made in this paper to
optimize the velocity of the reconstruction proce-
dure. This issue can be addressed by using multi-
scale methods (Herman and Kuba, 1999) and
faster optimization algorithms. We note that the
principles adopted in this paper can be easily ex-
tended in a multi-scale framework since the vector
space used to de®ne the interpolated volume

Fig. 7. (a) and (b) Ultrasound images of a gall bladder, (c) and

(d) reconstructed images, (e) and (f) new cross-sections of the

reconstructed volume, (g) and (h) 3D reconstruction of the Gall

Bladder.

Table 1

Test with synthetic data (the best results are in bold)

Global Leave one out

SNR MAE LL SNR MAE LL

PNN 9.0 59.4 )179 19.0 61.9 )186

DW 16.8 58.9 )173 16.8 62.9 )188

Rayleigh 25.4 58.5 )184 25.4 61.0 )190

1 The PNN and DW algorithms were implemented consid-

ering a neigborhood of 1 voxel.
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contains a set of nested lower resolution spaces
associated to subsampled grids. Other multi-reso-
lution spaces (e.g., wavelets (Mallat, 1989)) can
also be studied.

The registration of the ultrasound images is also
a key direction for future work. This is an active
research area in 3D ultrasound (e.g., see Dorai
et al., 1998; Rohling et al., 1998) as well as in other
visualization modalities (Levoy, 1990; Nelson
et al., 1999). In the case of free hand ultrasound
imaging, the sensor position and orientation data
is corrupted by measurement noise and the organs
shapes change during the acquisition process. Both
e�ects produce image misalignments which de-
grade the performance of the reconstruction al-
gorithm. It is expected that the same principles
used in this paper for volume estimation may also
be applied for the estimation of alignment pa-
rameters (Sanches and Marques, 2000).

A third direction concerns the data distribution.
The Rayleigh model adopted in this paper to
represent speckle noise improves the results ob-
tained under the Gaussian assumptions. However,
it is important to validated this model and to de-
termine if signi®cant improvements can still be
achieved by using more accurate data distribu-
tions.
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