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Abstract

This paper addresses 3D reconstruction of human
organs from a set of ultrasound images, assuming that
the probe position and orientation is available. Unfor-
tunately, pose measurement errors produce significant
misalignments which degrade the performance of the re-
construction algorithms. This paper proposes a method
for correcting these distortions by estimating the true
position and orientation of the ultrasound probe. This
is achieved by a joint computation of the 3D data and
probe parameters using a MAP criterion. An evalua-
tion of the proposed algorithm by Monte Carlo method
is included in the paper.

1. Introduction

Three-dimensional reconstruction of Human organs
and tissues is a wide spread operation in CT (Com-
puted tomography) [5], MRI (Magnetic Resonance
Imaging), PET(Positron Emission Tomography)[6]
and SPECT (Single Photon Emission Computed
Tomography)[12]. However it is much less common in
ultrasound imaging [10] essentially due to four reasons:
1) non parallel inspection planes due to free hand probe
manipulation, 2) tissue deformations during the acqui-
sition process, 3) position sensor errors [2] and 4)low
signal to noise ratio of the ultrasound images.

In the free-hand ultrasound technique the probe is in
full contact with the human body, and it is moved and
maintained under pressure by the medical doctor. This
procedure compresses, distorts and modifies the organs
shapes and positions during the acquisition process.
Consequently, significant geometric distortions can be
observed in the ultrasound images. Furthermore, the
locator system coupled to the ultrasound probe also
introduces significant errors in the position and orien-
tation measurements. Some actions can be taken to
alleviate these effects. e.g., improving of the accuracy
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of the position sensor or by reducing the sensor pres-
sure during the acquisition process (unfortunately some
pressure is needed to achieve good energy coupling be-
tween the tissues and the probe).

This paper addresses the problem of image align-
ment. An algorithm is presented to correct the posi-
tion and orientation measurements received from the
spatial locator based on an joint analysis of the all ul-
trasound images acquired during the experiment. The
position and orientation parameters are recursively ad-
justed to improve the spatial coherence of the images.
The estimation is made on a Bayesian framework and
the proposed algorithm is tested using synthetic and
real data.

Other approaches were proposed for the alignment
of ultrasound images. Some algorithms rely on the ob-
ject surface [11, 4]. Object contours computed using
snakes have also been used [9, 8, 3]. Both approaches
rely on the extraction of edge points belonging to the
object boundary. This is not always robust especially
in the case of ultrasound images. The method proposed
here is different since it uses all the reconstructed data
as a model instead of searching for the transitions only.
Furthermore, it is fully consistent with the multiplica-
tive noise present in ultrasound images.

This paper is organized as follows: volume recon-
struction assuming perfect position measurement is de-
scribed in section 2. The joint estimation of the volume
data and position correction is addressed in section 3.
The proposed algorithm is evaluated in section 4. Sec-
tion 5 concludes the paper.

2. Reconstruction Algorithm

The goal of volume reconstruction is the estima-
tion of a scalar function f(z), defined in a region of
interest Q C R3. This function describes the acous-
tic reflectivity which characterizes human organs and
tissues. It is assumed that f(z) = B(z)TU where
B(z) = [b1(z),b1(x),....bn ()] is a vector of known



basis functions and U a vector of coefficients to be es-
timated. The estimation of f(z) can be performed in
a Bayesian framework, using the MAP method.

The data used for estimating f(x) is formed by a
set of ultrasound images obtained with a free-hand ul-
trasound equipment similar to the one used in clinical
diagnosis. A spatial locator was attached to the ultra-
sound probe, allowing the measurement of the probe
position and orientation. Therefore, the data available
for estimating f(z) is a set of points, {(z?,y?)} where
z¥ is a 3D vector describing the position of the image
pixel in space and y? the intensity of the i-th pixel at
time instant p. The MAP reconstruction is achieved
by:

U = argmaxIn(p(Y|U)p(U)) (1)

where p(Y|U) is the sensor model and p(U) is the prior
density. This optimization problem is solved using nu-
merical methods. This is not an easy task since the
number of variable is large. In the sequel, it is assumed
that the image pixels are realizations of a random vari-
able with Rayleigh distribution [1] and a Gaussian prior
is adopted, leading to
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where I is the set of all neighboring nodes and Z is
a normalization factor. The « parameter is used for
controlling the prior influence (details of this algorithm
can be found in [7]).

3. Alignment-by-Reconstruction Algo-
rithm

The previous section assumes that the position and
orientation measurements used to compute xf are accu-
rately known. This is not true in practice. Registration
is needed for correcting the position and orientation
parameters of the inspection planes, to minimize the
effect of position errors which blur the reconstruction
results.

In this paper we present an algorithm for the esti-
mation and correction of the position errors. Instead of
using a two step method (alignment followed by recon-
struction) a joint estimation of the displacement and
reconstruction variables is adopted.

Consider a pixel y? corresponding to a 3D location
x;. It will be assumed that the measurement error,
introduced by the spatial locator, corresponds to a shift
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Figure 1: Inspection plane: displacement vectors

of the inspection plane (see Fig. 1). Therefore, the
geometric measurement available for reconstruction is:
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where 2% is the true position, K7 and K% are the po-
sition errors and u} and u} are two orthogonal vectors
belonging to the p-th inspection plane (see Fig. 1).
It is also assumed that the position errors, KP?, are
random variables with Gaussian distribution N (0, R),
R = diag{c?,03}.

The goal of the alignment algorithm is the estima-
tion of the displacement vectors, K = {K?, K?} such
that . .

i =i + KP b + Kb (5)
is closed to 2. The estimation method used for
estimating the 3D data and probe displacements is
an extension of the one adopted in section 2. It is
based on the maximization of the joint density func-
tion p(Y,U,K|R) = p(Y|U, K, R).p(U|K, R).p(K|R).
Assuming that U and K are independent random vari-
ables,

K =arg m}:{ixln(p(Y|U, K,R)p(K|R)) (6)

where p(K|R) is the displacement prior:
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A stationary point of (6) with respect to K? will be
computed. The Newton-Rapson method is used to
minimize (6) leading to:
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where sums are performed for all the pixels belonging
to the p-th image and the derivatives are:

df (x7)
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Figure 2: a)Synthetic cross-section of a tube.
p(Y,U|K) surface for several displacements of the
shown image using b) the original set of coefficients

c) a estimated set of coefficients.
alr

_—

0 0z 0.4 0.8 0.8 1 12 1.4

a 1

o/r
Figure 3: Results obtained from Monte Carlo method
for 9 deferent values of position noise with 20 experi-
ments per each.

dx? N dx? N = .
(dITZf = uj and dITZ’ = u3), where Vf(z?) is the gra-

dient of f(z) computed in 2? and 6f(xf)uz is the
derivative of f(z¥) along the u;” direction. The o,
parameters can also be recursively estimated in each
iteration through:

T N; —1

where N; is the number of images. To initialize the
algorithm a first estimate is computed without posi-
tion correction as described in the section 2. This es-
timate is used for initializing the algorithm described
in this section. In the next iterations all the coeffi-
cients are updated using the best position estimates.
Volume reconstruction and matching alternate until
P(Y,U, K|R) is maximized.

4. Experimental Results

This section evaluates the performance of the pro-
posed algorithm by Monte Carlo techniques. The re-
construction of human organs obtained from ultra-
sound images is also presented.

First, it is important to characterize the advantages
of the joint volume/alignment estimation. Consider a
cross section of a tube corrupted by multiplicative noise
(Fig. 2a). Fig. 2b,c display the likelihood p(Y, U|K) as
a function of the displacement K. The true coefficients,
U are used in Fig. 2b which allows an accurate estima-
tion of K. Unfortunately, U is not available in practical
situations. Fig. 2c displays p(Y,U|K) using the MAP
estimates, U , obtained without pose correction (first it-
eration of the alignment-by-reconstruction algorithm).
The estimation of K is mutch more difficult in this case
since the function is smooth (the reconstructed volume
is blurred). The iterative algorithm is an attempt to
improve the p(Y,U|K) in such a way that we may ap-
proach Fig. 2b starting from Fig. 2c.

Monte Carlo tests were carried out to assess the
performance of the alignment-by-reconstruction algo-
rithm. The alignment results are characterized by
the standard deviation of the alignment error e’ =
KP — K?. The standard deviation is computed from
20 reconstruction experiments, each of them using 50
ultrasound images. The probe position is corrupted
by Gaussian noise with standard deviation ox. The
20 experiments were repeated for several values of 0.
Results are shown in Fig. 3. (These results concern
the reconstruction of a tube with radius r. The dimen-
sion of each image is r X r). Very good error correction
is achieved for ox < .8r. The algorithm has a break
point at ox = .8r. After this level, the probe errors
are so high that prevent the convergence of the volume
and pose estimates towards acceptable values (without
reasonable volume estimates no matching is possible).

Fig. 4 shows two cross-sections of the tube without
and with alignment. The improvement achieved by the
alignment algorithm in this example is clear. The edges
become much sharper and the blurring introduced by
the sensor position errors is removed. Fig. 4c shows
the evolution of the likelihood function, p(Y,U|K), in
both tests. A significant increase of the likelihood func-
tion is observed when alignment is applied. This can
be seen after the 8-th iteration because no alignment is
used before. The first 8 iterations are used to initialize
the volume estimate. A multi-scale algorithm is used
during these iterations: a coarse volume representation
is adopted in the first iteration which is recursively re-
fined in following 7 iterations. This is a way to improve
the convergence of the reconstruction process.

Fig. 5 shows reconstruction results obtained with
real data. A set of 94 ultrasound images is used to re-
construct a volume containing an human organ. Fig.
5a shows the results obtained without alignment and
Fig. 5b shows the results with the alignment correc-
tion. The pose correction introduced in Fig. 5b allowed
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Figure 4: Reconstructed volume a)without alignment,
b)with alignment, ¢)Evolution of p(Y, U|K) during the
estimation process

to eliminate the reconstruction artifacts observed in
Fig. 5 a inside the dark cavity. These results were
obtained after 15(8+7) iterations.

5. Conclusions

This paper describes an algorithm for the correction
of the probe position errors in ultrasound imaging. A
non-Gaussian model is used for describing the observed
images. The position error is modeled as a random dis-
placement of the inspection plane. A joint alignment
and reconstruction algorithm is proposed based on the
optimization of the posteriori distribution of the pa-
rameters. This provides a solid framework for the es-
timation of all unknown variables, therefore avoiding
the use of ad hoc criterion for the estimation of each
type of variable. Experimental results with real data
and Monte Carlo tests showed that a significant im-
provement of the reconstruction results is achieved by
the proposed algorithm.

The use of alignment-by-synthesis combined with
multi-scale methods will be addressed in a forthcoming

paper.
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