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José Santos

December 2009
VISLAB-RT-01-2010

ISR — Torre Norte
Av. Rovisco Pais, 1

1049-001 Lisboa
PORTUGAL



1 Introduction

This work adresses the problem of sensorimotor learning for a humanoid
robot head. We follow a paradigm where a robot, like human babies, comes
to the world with few abilities and develops then with time. Of course,
an organism cannot develop without some built in ability. However, if all
abilities are built in the organism will not develop either. Nevertheless, the
set of abilities that are present at birth is far from clear [4].

The most obvious way in which a child has been prepared for action is the
design of its body. Each body part is part of a perception-action mechanism
and was tailored by evolution in order to be so.

The problem of learning to control each body part is a very complex one.
However, evolution has made it easier by providing several constraints (these
constraints reduce the many degrees of freedom of the motor system). For
instances, a child must learn how to control the arms before gaining control
of the hands (in newborn infants when the arm moves, the fingers must move
accordingly).

In this report we are interested in the process by which an infant senses
gravity and learns to control its head. The idea is to provide a model of
the direct rotation kinematics of the head and an algorithm which updates
the model incrementally in the course of action. Clearly, we are assuming
that some perceptual information is given as input. This is not an artificial
claim, since perception must always preceed action [4]. We assume that the
propreceptive (motor) and vestibular (inertial) senses are already developed.
This report presents some experimental results concerning the application of
an online incremental learning algorithm to the problem of learning ICub’s
rotation kinematics and motor-inertial map.

2 ICub Head Kinematics

The ICub joints are organized into six sub-systems: the head, left arm, right
arm, torso, left leg and right leg. In this report, we shall only consider the
head sub-system.

The Head sub-system has 6 joints in the standard configuration: neck
pitch (tilt), neck roll (swing), neck yaw (pan), eyes tilt, eyes version and eyes
vergence, as shown in figure 2. In this report, we are solely interested in the
head movements: tilt, swing and pan.
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Figure 1: Illustration of the Head degrees of freedom.

It is important to establish a reference coordinate frame, which will be
denoted by {0}. This reference coordinate frame corresponds to the body
coordinate frame. This frame is defined by the local vertical and by the ro-
tation of the body along this axis. Considering identical reference coordinate
frames for all joints in the canonical state, the rotation matrix representing
the head’s orientation with respect to the body reference frame depends on
the tilt, swing and pan angular displacements, and is given by:

0R3 = 0R1 · 1R2 · 2R3 (1)

= ROTy(θt) · ROTx(θs) · ROTz(θp) (2)

=

 ct 0 st
0 1 0
−st 0 ct

 ·
1 0 0

0 cs −ss
0 ss cs

 ·
cp −sp 0
sp cp 0
0 0 1

 (3)

with ct = cos(θt), st = sin(θt), cs = cos(θs), ss = sin(θs), cp = cos(θp) and
sp = sin(θp).

The main goal of this project is to provide an online incremental method
for building a model of 0R3, that is: iCub is expected to learn its direct
kinematics in an online incremental way.

The iCub has an inertial sensor which calculates the orientation between
the sensor-fixed coordiante system, denoted by {S}, and an earth fixed co-
ordinate system, denoted by {G}. By default the local earth-fixed reference
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co-ordinate system used is defined as a right handed Cartesian coordinate
system with:

• X̂ positive when pointing to the local magnetic North.

• Ŷ according to the right handed coordinates (West).

• Ẑ positive when pointing up.

Note that this coordinate system may not correspond to the body coordinate
system (however, that can happen if the iCub is placed facing North). More-
over, the sensor fixed coordinate system does not correspond to the head fixed
coordinate system (above denoted by {3}), because of the way the sensor is
installed in iCub’s head. This two coordinate systems are related acording
to the following rotation matrix:

3RS = ROTz(π) =

−1 0 0
0 −1 0
0 0 1


Therefore, one can say that the inertial sensor outputs the following rotation
matrix:

GRS = GR0 · 0R3 · 3RS

Using the information provided by the motor encoders (the joint angle
displacements) and the information provided by the inertial sensor(GRS), our
goal is to propose an online incremental method for building a model of 0R3.
However, in order to collect the appropriate data for builing the model, we
are faced with two initial problems:

1. The inertial sensor outputs GRS, from which one can easily compute
GR3 (GR3 = GRS · SR3). However, how can we determine 3R0 from
GR3?

2. The angle displacements given by the motor encoders are measured
with respect to the position in which the robot was turned on. Since
the goal is to learn a model that can be stored and used again, one
must estimate the initial position of the head with respect to a fixed
reference frame; we will use {0}.
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In order to solve the first problem it is important to develop a method to
estimate GR0. Note that:

GR3 = GR0 · 0R3

So, considering the properties of rotation matrices:

GR0 = GR3 · 3R0 (4)

= GR3 · 0RT
3 (5)

We propose the following method for computing GR0:

• When the iCub is turned on, its head is aligned with its body. That is,
its head is put in a position such that: 0R3 = I.

• After aligning the head with the body, we know that:

GRS = GR0 · 3RS

So:
GR0 = GRS · SR3

Since GRS and SR3 are both known, GR0 is easily computed. We fur-
ther note that GR0 = ROTz(θ0), so computing GR0 is equivalent to
computing θ0.

Note that after aligning the iCub’s head with its body, we can reset the
encoders, hence solving the second problem mentioned above.

3 Aligning ICub’s head with its body through

the sense of Gravity

Considering equation 2 and having performed the required calculations, one
can state that: (

GRS

)
31

= rGS31 = st · cp − ct · ss · sp (6)(
GRS

)
32

= rGS32 = −st · sp − ct · ss · cp (7)

The goal is to place the iCub’s head in a position such that 0R3 = I. In such
a position the following equalities must be verified:

rGS31 = 0 (8)
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rGS32 = 0 (9)

In order to put the iCub’s head in a position in which this two equations are
verified, we only need to change the tilt and swing angular displacements.
This problem is one of solving a system of nonlinear equations (the number
of equality conditions is equal to the number of variables).

r(θt, θs) =

[
rGS31 (θt, θs)
rGS32 (θt, θs)

]
=

[
0
0

]
A popular way to solve this kind of problems is to use Newton’s method

for nonlinear equations [2]. Newton’s method defines a linear model Mk(∆θ)
of r(θ + ∆θ) in the following way:

r(θ + ∆θ) = r(θ) + J(θ) ·∆θ

where J(θ) denotes the jacobian of r evaluated in θ.
Newton’s method in its pure form chooses the step ∆θ to be the vector

for which Mk(∆θ) = 0, that is:

∆θ = −J(θ)−1 · r(θ)

However, in this case, since r is not known, the information required for
computing the jacobian is not given. Hence, we will use Broyden’s method [2].
Broyden’s method is a secant method, it constructs its own approximation
of the Jacobian, updating it at each iteration so that it mimics the behavior
of the true Jacobian J over the step just taken.

The requirement that the approximate Jacobian should mimic the behav-
ior of the true Jacobian can be specified as follows. Let sk denote the step
form θk to θk+1 and let yk denote the corresponding change in r, that is:

sk = θk+1 − θk

yk = r(θk+1)− r(θk)

Broyden’s method requires that the updated Jacobian approximation Bk+1

to satisfy the following equation, which is known as the secant equation:

yk = Bk+1 · sk
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which ensures that Bk+1 and J(xk+1) have similar behavior along direction
sk. The Broyden’s method corresponds to the following update:

Bk+1 = Bk +
(yk −Bk · sk) · sTk

sTk · sk
(10)

The Broyden update makes the smallest possible change to the Jacobian (as
measured by the Euclidean norm: ‖Bk −Bk+1‖ 2) that is consistent with the
secant equation, which can be formally stated as:

Bk+1 ∈ arg min
B : yk=B·sk

‖B −Bk‖

The specification of the algorithm is presented below.

Algorithm 1 Broyden’s Method

Choose θ0 and a nonsingular initial Jacobian approximation B0;
for k = 0, 1, 2, · · · do

Calculate a solution ∆θk to the linear equations Bk ·∆θk = −r(θk)
θk+1 ⇐ θk + ∆θk
sk ⇐ θk+1 − θk
yk ⇐ r(θk+1)− r(θk)
Obtain Bk+1 from formula 10

end for

After applying Broyden’s algorithm it is reasonable to expect that the
tilt and swing displacements are almost zero. So:

θ0
t = −

n∑
k=1

∆θkt

θ0
s = −

n∑
k=1

∆θks

Using these values one can easily compute the initial pan displacement θ0
p

using equations 6 and 7:

s0
p =

b · r0
31 − a · r0

32

a2 + b2
(11)
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c0p =
r0
31 − b · s0

p

a
(12)

with a = st and b = −ct · ss. Therefore:

θ0
p = atan2(s0

p, c
0
p)

4 Learning a Motor-Inertial Map

Receptive Field Weighted Regression [6] is an algorithm designed in order to
be used in an incremental online way.

The RFWR algorithm is used to build a model of 3R0, that is a function
F : R3 → R9, such that:

F (θtilt, θswing, θpan) = vec
(
3R0(θtilt, θswing, θpan)

)
(13)

Where vec corresponds to the vectorization operator.

4.1 RFWR: Incremental Online Learning

The goal of RFWR is to construct a system of receptive fields for incremental
function approximation. A prediction ŷ for a query point x is built from the
normalized weighted sum of the individual predictions ŷk of all receptive
fields:

ŷ =

∑K
k=1wkŷk∑K
k=1wk

(14)

The weights wk correspond to the activation strenghts of the corresponding
receptive fields.

The weights wk are computed using a gaussian kernel:

wk = exp

(
−1

2
(x− ck)TDk(x− ck)

)
(15)

where Dk = MT
k Mk and Mk is an upper diagonal matrix, which ensures that

the positive definiteness of Dk (Dk is a distance metric).
Each receptive field corresponds to a local linear model.

ŷk = (x− ck)T bk + b0,k (16)
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Defining x̃ =
(

(x− ck)T , 1
)T

and βk =
(
b0,k, b

T
k

)T
, it is possible to rewrite

equation 16 as:
ŷk = x̃Tβk (17)

Since RFWR is an incremental online learning method, the update of the
parameters of each linear model (βk) has to be done incrementally. Never-
theless, it is important to understand that for each linear model, βk could be
computed explicitly using a locally weighted linear regression. Instead, this
update is computed by recursive least squares.

Adjusting the shape and size of the receptive field is accomplished by ad-
justing the distance metric D = MTM . This update is computed by gradient
descent in order to minimize the leave-one-out cross validation criteria:

J =
1

W

p∑
i=1

wi ‖yi − ŷi,−i‖2 (18)

Where ŷi,−i denotes the prediction of the i-th data point calculated when
training the learning system with the i-th data point excluded from the
training set. Without storing data in incremental learning, we cannot use
cross validation and, thus, we cannot obtain the true gradient. Therefore,
a stochastic approximation of the gradient is derived. As such, given a new
training point (x, y), the algorithm will compute a stochastic approximation
of the gradient and then perform the steepest descent step according to:

Mn+1 = Mn − α · ∂J
∂M

(19)

where α denotes the learning rate.
Lastly, when using RFWR one must establish two important thresholds:

wgen and wprune. Given a new training point xq, if no receptive field is
activated by more than wgen, a new receptive field is created with center xq.
The idea is to create a new receptive field each time a training sample does
not activate any of the existing receptive fields by more than a threshold
wgen. Conversely, if two receptive fields overlap too much, one of them must
be pruned. The idea is to prune the one which has a larger covariance matrix.

4.2 Learning a Rotation Matrix

When using RFWR, building a model for F = (f1, · · · , f9) 13 is equivalent to
building 9 different models independently. However, after learning the whole
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model, given a query point ~θq, the model’s prediction R̂q may not correspond

to a rotation matrix. In this situation we choose to project R̂q onto the
subspace of rotation matrices.

So, giving a query point ~θq, the learned model is used to obtain a predic-

tion R̂q. Then, one has to solve the following problem:

min
R is a rotation matrix

∥∥∥R− R̂q

∥∥∥ (20)

Consider the singular value decomposition (SVD) of matrix R̂q, given by:

R̂q = UDV T

The solution of the optimization problem 20 corresponds to R = UV T .
Therefore, to make a prediction one must apply the following steps:

1. Use the learned model to compute a prediction R̂q.

2. Compute its singular value decompostion (SVD) R̂q = UDV T .

3. Ouput UV T .

5 Experimental Results

5.1 Inertial Sensor Noise Characterization

As was stated in section 2, the inertial sensor outputs a rotation matrix,
GRS, which describes the orientation of the sensor fixed co-ordinate system,
{S}, with respect to the earth fixed co-ordinate system, {G}. Naturally, the
information provided by this sensor includes noise. Therefore, in order to
simulate it properly one needs to characterize the noise variance.

We have evaluated the sample variance of the rotation matrix provided by
the inertial sensor in a wide range of positions. In each position we recorded
100 samples and then computed the sample variance. The maximum variance
registered was 0.00334233. Hence, in each of the simulations presented in
this section we shall assume a zero-mean gaussian white noise with variance
0.0034.
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5.2 Aligning ICub’s head with its body

The Broyden’s Method as described in algorithm 1 was implemented in Mat-
lab in order to assess the way it converges when applied to the problem of
aligning the ICub’s head with its body. We assume that initially each joint
angle (tilt, swing and pan) is reasonably close to 0 with respect to the body
reference frame (every joint angle is assumed to be lower than 30◦).

Broyden’s method is applied in order to find a position such that: θtilt = 0
and θswing = 0. After finding the corresponding initial values, one can easily
compute the initial pan displacement. As such, the simulations presented in
figures 2 to 5 illustrate the way θtilt and θswing are changed during the appli-
cation of the algorithm. In each simulation we only consider ten iterations
since we expect this method to converge quickly.

(a) (b)

Figure 2: θtilt = π
6

θswing = π
6

(a) θtilt = π
6 θswing = π

12 (b)

Figure 3: θtilt = π
6

θswing = π
12
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(a) (b)

Figure 4: θtilt = π
12

θswing = π
6

(a) (b)

Figure 5: θtilt = π
12

θswing = π
12

Broyden’s algorithm was successfully implemented on Chica. This algo-
rithm was applied to the problem of calibrating the motor encoders. There-
fore, it is quite difficult to evaluate its results in practice, since the real zero
is not known. Nevertheless, we can illustrate the application of the algorithm
by showing how the entries of the rotation matrix provided by inertial sensor
change during the corresponding application. When the head of the robot is
aligned with its body, the orientation matrix provided by the inertial sensor
must be a rotation about the Z axis. So entries r31, r32, r13 and r23 must
be zero and entry r33 must be 1. Table 5.2 presents the evolution of these
entries when Broyden’s algorithm is applied to the real robot. Naturally, it is
only possible to estimate the initial joint angles after applying the algorithm
and assuming that the head is then aligned with the body.

11



Table 1: θ0
tilt = 0.7561rad θ0

swing = 0.3047rad θ0
pan = 0.5927rad

Iterations r31 r32 r13 r23 r33

0 0.448124 -0.565588 -0.365259 -0.622327 0.692311
1 0.404702 0.03108 0.220109 -0.34103 0.91392
2 0.030612 0.262968 0.250975 0.084264 0.964319
3 -0.138035 0.059402 -0.008302 0.150045 0.988644
4 -0.064814 -0.097917 -0.116638 0.013573 0.993082
5 0.054952 -0.052626 -0.019847 -0.073453 0.997101
6 0.042871 0.023935 0.041518 -0.02621 0.998794
7 0.003065 0.041944 0.038273 0.017432 0.999115
8 -0.029368 -0.002641 -0.016464 0.024462 0.999565
9 0.003777 -0.005103 -0.002637 -0.005775 0.99998

5.3 RFWR - Tuning Parameters

In order to use the RFWR algorithm properly one has to tune several pa-
rameters. In this report, we shall only consider the initial distance metric
D0 = MT

0 M0. For all the other parameters we have used the values sugested
in [5].

It was experimentally verified that the initial choice for the distance met-
ric D0 plays a major role in controlling the creation of new receptive fields (at
least in the beginning of the learning process). This is quite relevant since the
creation of many receptive fields will damage the smoothness of the learned
model. Nevertheless, the creation of new receptive fields is a fundamental
part of the RFWR algorithm because it allows it to model highly non-linear
functions. Given a query point ~θq, the activation strength of each receptive
field is given by a gaussian kernel. In order to get a larger receptive field, one
must increase the diagonal values of the corresponding covariance matrix.

As discussed in section 4.2, our goal is to use the RFWR algorithm to
build a model of 3R0 as a function of the joint angle displacements (according
to formula 13). Clearly, not all entries of 3R0 depend on the three angular
displacements. For instance, (3R0)11 does not depend on θtilt:(

3R0

)
11

= cos θswing · cos θpan

Therefore, we will start by analysing the behaviour of the algorithm in the
two-dimensional case, considering the following function:

r11(θs, θp) = cos θs · cos θp
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(a) 100 training samples (b) 500 training samples

(c) 1000 training samples

Figure 6: [π/18 0.01; 0.01 π/18]

The results corresponding to 3 different initial distance metrics:[
π 0.01

0.01 π

] [
π
9

0.01
0.01 π

9

] [
π
18

0.01
0.01 π

18

]
are presented in figures 6 to 8. In each case, a set consisting of 100000 query
points was generated, from this set 3 different sets consisting of 100, 500 and
1000 query points, respectively, were randomly selected. The algorithm was
then tested on each of these sets.

5.4 RFWR - Learning the whole model

This section presents two simulations in which the RFWR algorithm is used
to model 3R0 as a function of the joint angles.

In the first simulation a test set consisting of 1000 was generated. Ten
test sets with different dimensions were randomly selected from the original
test set. The results are presented in table 2.

In the second simulation the algorithm was applied to real data. There
were two major problems concerning the acquisition of real data:

1. The inertial sensor and the motor encoders are not synchronized.
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(a) 100 training samples (b) 500 training samples

(c) 1000 training samples

Figure 7: [π/9 0.01 ; 0.01 π/9]

2. The information provided by the inertial sensor includes noise.

The ICub’s head was put in each position for a fixed period of time. Dur-
ing this period all data provided by the inertial sensor was recorded. The
rotation matrix associated with the position in which the ICub’s head was
put corresponds to the arithmetic mean of the recorded set. Results are
presented in table 3.

6 Conclusions and Future Work

In order to build a model which establishes a relation between the orientation
of the head of the robot (with respect to the body coordinate system) and
the joint angles, one must start by calibrating the motor encoders. Results
concerning the application of Broyden’s algorithm to this particular prob-
lem show that it generally converges to a very close value in less than ten
iterations. Therefore, it performs as well as it is required.

14



(a) 100 training samples (b) 500 training samples

(c) 1000 training samples

Figure 8: [π 0.01 ; 0.01 π]

The results obtained after applying the RFWR algorithm were mildly
good. However, we feel that different methods should be tried, for instances:
sparse online gaussian processes [3]. This second method is known to perform
better in the presence of smaller amounts of training data. Moreover, the
RFWR algorithm has such an amount of tuning parameters that it becomes
very hard to find the setting for which it presents better results. Nevertheless,
it is important to stress the qualities of this algorithm: particularly, the fact
that it is fairly simple to compute the gradient of the obtained model.
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