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Abstract. Plenoptic cameras discriminate the contribution of each ray
emanating from a particular point by placing a microlens array between
the main lens and the image sensor. The collection of rays captured by
these cameras can represent the physical microlens camera array or can
be rearranged to represent a virtual camera array with a very narrow
baseline (viewpoint camera array). In this work, we extend the common
camera arrays considered for standard plenoptic cameras (SPCs) and
define the geometry associated with the different virtual camera arrays
that can be obtained by shearing the lightfield (LF). This geometry is
validated using a publicly available calibration dataset and calibration
toolbox. The results show that the geometry proposed is capable of de-
scribing the multiple viewpoint and microlens camera arrays.

Keywords: Standard Plenoptic Camera, Viewpoint Camera Array, Mi-
crolens Camera Array, Shearing

1 Introduction

Plenoptic cameras discriminate the contribution of each light ray that emanate
from a given point due to the positioning of a microlens array between the main
lens and the image sensor. This allows to project a point in the scene onto
several positions of the sensor (Figure 2.a). The collection of rays acquired by
these cameras is called a lightfield (LF) [7, 11].

In this work, we will focus on the standard plenoptic camera (SPC) [15]
whose geometry generates unfocused microlens images (MIs) (Figure 2.c). SPCs
define several types of camera arrays by reorganizing the pixels captured by
the camera on the 2D raw image (Figure 2.b) [15]. The raw image displays
the pixels collected by each microlens in the microlens array (Figure 2.c) and
represents the images captured by the physical microlens array placed in front
of the sensor. There is another arrangement of pixels that is commonly used in
SPCs, the viewpoint images (VIs). These images are obtained by selecting the
same pixel position relatively to the microlens center for each microlens [15]. This
rearragement defines a virtual camera array with co-planar projection centers
and with a very narrow baseline [1].
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(a) Fixed viewpoint camera
array, 5 refocusing depths

(b) Principal points array for
refocusing at depth 1 in (a)

(c) Principal points array
areas for refocusing

depths in (a)

(d) Refocusing at depth 1,
faraway cars blurred

(e) Refocusing at depth 3,
bricks texture focused

(f) Refocusing at depth 5,
nearest parrot blurred

Fig. 1. Viewpoint camera arrays obtained considering shearing for refocusing at depths
z = 0.2, 0.4, . . ., 1.0 m (a). The spacing among projection centers has been scaled 100
times to be perceptible on the 3D plot. The distribution of the principal points for the
viewpoint camera arrays at different refocusing depths are depicted in (b) and (c).
The corresponding refocused images are depicted in (d), (e) and (f).

A SPC allows to define additional cameras that collect rays that intersect
at an arbitrary point in the scene [13] either by applying a shearing operation
or creating surface camera images (SCams). Although these strategies are com-
monly used for disparity estimation [5, 16], the geometry associated with the
corresponding cameras has not been defined. In this work, we derive the map-
pings between a SPC [6] and the multiple viewpoint and microlens camera arrays
that can be obtained from this camera.

In terms of structure, we present in Section 2 a review of the camera array
mappings for SPCs. In Section 3, we introduce the SPC model and the view-
point and microlens camera arrays mappings considered in the literature from
this model. The generalized mappings proposed for the viewpoint and microlens
camera arrays are presented in Section 4. In Section 5, these mappings are vali-
dated experimentally and the major conclusions are presented in Section 6.

Notation: italic letters correspond to scalars, lower case bold letters correspond
to vectors, and upper case bold letters correspond to matrices. Vectors repre-
sented in homogeneous coordinates are denoted by (̃·).
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2 Related Work

Dansereau et al. [6] proposed a mapping between the LF in the image space
defined in pixels and microlenses indices and the LF in the object space defined
by a position and a direction in metric units (Figure 2.a). Nonetheless, there
is not provided a connection between this mapping and the projection matrix
for either the microlens or viewpoint cameras. The definition of the projection
matrices for the microlens and the viewpoint cameras appeared in the work of
Bok et al. [4]. The geometry of the camera arrays is described using the param-
eters of the optical setup and the knowledge of the corresponding microlenses
centers in the raw image but no relationship with the originally proposed model
for SPCs [6] is provided. Additionally, the geometry proposed for the viewpoint
cameras does not explain the zero disparity for points in the world focal plane
of the main lens.

Marto et al. [12] represented a camera array composed of identical co-planar
cameras using a mapping similar to the one proposed by Dansereau et al. [6].
However, the mapping proposed does not explain the zero disparity. The map-
ping between the SPC model [6] and the viewpoint camera array that is consis-
tent with the zero disparity for points in the world focal plane of the main lens is
described in [1]. This model for the viewpoint cameras consider co-planar cam-
eras with a shifted principal point among the different viewpoint cameras. The
corresponding mapping between the SPC model [6] and the microlens camera
array is described in [2].

In this work, we extend the characterization of the microlens and viewpoint
camera arrays found in the literature [1, 2, 4] and define the geometry of the
several cameras that can be defined by collecting the rays captured by a SPC
that intersect in an arbitrary point in the object space.

3 Standard Plenoptic Camera

A SPC can be represented by a 5 × 5 matrix H [6] which maps rays Φ̃ =

[i, j, k, l, 1]
T

in the image space to rays Ψ̃ = [s, t, u, v, 1]
T

in the object (metric)
space:

Ψ̃ = H Φ̃ (1)

where rays Φ are parameterized using pixels (i, j) and microlenses (k, l) indices
and rays Ψ are parameterized using a position (s, t) and a direction (u, v) defined
on a plane Γ in metric units [14] (Figure 2.a). The mapping H [6] has 12 non-zero
entries

H =


hsi 0 hsk 0 hs
0 htj 0 htl ht
hui 0 huk 0 hu
0 hvj 0 hvl hv
0 0 0 0 1

 . (2)
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(a)

(b)

(c)

Fig. 2. Geometry of a SPC whose main lens focal plane corresponds to planeΩ (a). The
LF in the image space is parameterized using pixels (i, j) and microlenses (k, l) indices
while the LF in the object space is parameterized using a point (s, t) and a direction
(u, v) defined on the parameterization plane Γ . (b) shows a raw image acquired with
a SPC with the mains lens world focal plane placed near the wall and (c) exhibits the
details of the microlenses in red box A.

In the following, we denominate H as the lightfield intrinsics matrix (LFIM) 3 .
One ray Ψ = [s, t, u, v]T can be represented as one parametric 3D line [8],

namely [x, y, z]T = [s, t, 0]T + λ[u, v, 1]T for λ ∈ IR. Therefore, the LFIM matrix
(2) allows to define the relationship between an arbitrary point [x, y, z]T in the
object space and the ray Φ in the image space [14] as

[
x
y

]
= Hst

ij

[
i
j

]
+ Hst

kl

[
k
l

]
+ hst + z

Huv
ij

[
i
j

]
+ Huv

kl

[
k
l

]
+ huv

 (3)

where the LFIM is partitioned in four 2× 2 sub-matrices and two 2× 1 vectors

hst = [hs, ht]
T

and huv = [hu, hv]
T

. The sub-matrices follow the notation H
(·)
(·)

where the subscript selects the columns and the superscript selects the lines, i.e.
for example, Hst

ij selects the first two columns, denoted by ij, and the first two
lines, denoted by st.

Viewpoint Camera Array. The SPC can be represented by a camera array
of viewpoints [1]. Let us represent the viewpoint camera array by a parametric
projection matrix Pij varying with the coordinates (i, j)

Pij = Kij
[
I3×3 tij

]
cTw (4)

3 We note that LFIM is a simplified term, as H effectively contains intrinsic parameters
information, however, it also contains baseline information, as detailed in Section 3.
Conventional extrinsic parameters, as found in pinhole camera models, defining a
world coordinate system, are in fact not contained in H.



Complete SPC Characterization 5

where Kij denotes the intrinsic matrix, I3×3 is a 3× 3 identity matrix, tij is the

projection center and cTw =

[
cRw

ctw
01×3 1

]
defines the rigid body transformation

between the world and camera coordinate systems with rotation cRw ∈ SO(3)
and translation ctw ∈ IR3, and 01×3 is the 1 × 3 null matrix. Note that the
intrinsic matrix and the projection center are different for each viewpoint camera
(i, j). More in detail, the intrinsic camera model takes into account that the
principal point is different for each viewpoint while the scale factor remains the
same. The intrinsic matrix and projection center are

Kij =


1
huk

0 − hu
huk
− i hui

huk

0 1
hvl
− hv
hvl
− j hvj

hvl

0 0 1

 and tij = −


hs − hsk

huk
hu + i

(
hsi − hsk

huk
hui
)

ht − htl
hvl

hv + j
(
htj − htl

hvl
hvj
)

− hsk
huk

 . (5)

Microlens Camera Array. The SPCs can also be represented by a microlens
camera array [2]. Let us represent the microlens camera array by a parametric
projection matrix Pkl varying with the coordinates (k, l)

Pkl = Kkl
[
I3×3 tkl

]
cTw (6)

where Kkl denotes the intrinsic matrix and tkl is the projection center. As for
the viewpoint camera array, the intrinsic matrix and the projection center are
different for each microlens camera (k, l). Namely, the intrinsic camera model
takes into account that the principal point is different for each microlens while
the scale factor remains the same. The intrinsic matrix and projection center are

Kkl =


1
hui

0 − hu
hui
− k huk

hui

0 1
hvj
− hv
hvj
− l hvl

hvj

0 0 1

 and tkl = −


hs − hsi

hui
hu + k

(
hsk − hsi

hui
huk
)

ht − htj
hvj

hv + l
(
htl − htj

hvj
hvl
)

− hsi
hui

 .
(7)

4 Generalized Camera Arrays

In Section 3, one defined a parametric projection matrix to define either a view-
point or a microlens array. In this section, one shows that a plenoptic camera
can define multiple camera arrays by collecting rays with different combinations
of pixel and microlens coordinates.

Consider the LF in the object space LΓ (s, t, u, v) acquired by a plenoptic
camera with the plane Ω in focus (Figure 2.a). The LF captured by the plenop-
tic camera can be defined on another plane by shifting the parameterization
plane along the normal to the plane Γ . Assuming that the plane Π is at a dis-
tance dΓ→Π from the plane Γ , one can re-parameterize the LF captured by the
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plenoptic camera relatively to the plane Π [3], LΠ (q, r, u, v), by Ψ̃Π = D Ψ̃
where

D =


1 0 dΓ→Π 0 0
0 1 0 dΓ→Π 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (8)

and Ψ̃Π = [q, r, u, v, 1]
T

correspond to rays parameterized by a point (q, r) and a
direction (u, v) on plane Π. Mapping the LF in the object space LΓ (s, t, u, v) to
the LF in the image space L (i, j, k, l) by the intrinsic matrix H (2), one obtains

Ψ̃Π = D H Φ̃ . (9)

The new intrinsic matrix HΠ = DH allows to relate the LF in the object space
LΠ (q, r, u, v) and the LF in the image space L (i, j, k, l). The re-parameterization
(9) allows to define a constraint to identify the rays that intersect at an arbitrary
point of the plane Π [13]. Let Φa and Φb be two rays in the image space with
the same coordinates (q, r) on plane Π, by taking their difference one defines a
constraint on the LF coordinates in the image space as

[
0
0

]
= Hqr

ij

[
∆i
∆j

]
+ Hqr

kl

[
∆k
∆l

]
(10)

where ∆ (·) = (·)b − (·)a, and Hqr
(·) corresponds to 2 × 2 sub-matrices of HΠ

obtained from selecting the entries of the first two rows, denoted by qr, and
selecting either the entries of the 1st and 2nd columns, denoted by ij, or the
3rd and 4th columns, denoted by kl. Using the constraint (10) and considering
(ir, jr) as reference coordinates to enforce the constraint, one defines a sampling
on the viewpoint coordinates (i, j) as

kS = k + βik (i− ir) ∧ lS = l + βjl (j − jr) (11)

where the parameters βik = − hsi+ dΓ→Π hui
hsk+ dΓ→Π huk

and βjl = −htj+ dΓ→Π hvj
htl+ dΓ→Π hvl

corre-
spond to the disparities considered on the VIs for a point at depth dΓ→Π .

The sampling (11) corresponds to the sampling performed during the shear-
ing operation defined by Tao et al. [16]. The shearing can be interpreted as
a redefinition of the epipolar plane images (EPIs) [15, 16] of the acquired LF
L (i, j, k, l) according to a given slope that corresponds to disparity on the VIs.
Assuming that βik = βjl = β and denoting the rays in the sheared LF as

ΦS = [i, j, kS , lS ]
T

, the relationship between the rays of the acquired and the
sheared LF (11) can be redefined as



Complete SPC Characterization 7

Φ̃S =


1 0 0 0 0
0 1 0 0 0
β 0 1 0 −β ir
0 β 0 1 −β jr
0 0 0 0 1


︸ ︷︷ ︸

U

Φ̃ . (12)

The matrix U allows to define a virtual microlens camera (kS , lS) that collects
rays from the acquired LF that intersect at a common point in plane Π. Let us
analyze the influence of shearing on the camera arrays presented in Section 3.

Viewpoint Camera Array. Following the strategy defined in [1] to compute
the caustic surface, one can conclude that the caustic profile for the non-sheared
and sheared viewpoint camera (i, j) is the same. Namely, the constraint to en-
sure a unique projection center does not change as well as the location of the
projection center relatively to the non-sheared viewpoint camera. The projec-
tion matrix Pij

S for the sheared viewpoint camera is obtained considering the
back-projection equation (3) redefined with the LFIM HS = H U and solving
relatively to (k, l). This gives a projection matrix defined by

Pij
S = Kij

S

[
I3×3 tij

]c
Tw (13)

where Kij
S denotes the intrinsic matrix for the sheared viewpoint camera. More

in detail, the camera model for the sheared viewpoint camera only differs on
the principal point relatively to the non-sheared viewpoint camera counterpart
(4) (Figure 1.b-c), which is consistent with the strategy to translate the VIs to
perform shearing of the LF [10, 16]. The intrinsic matrix is given by

Kij
S =


1
huk

0 − hu
huk
− i hui

huk
− β (i− ir)

0 1
hvl
− hv
hvl
− j hvj

hvl
− β (j − jr)

0 0 1

 . (14)

Setting β = 0, the intrinsic matrix Kij
S (14) reduces to the intrinsic matrix Kij

(5).

Microlens Camera Array. Following the strategy defined in [2] to compute
the caustic surface, one can conclude that the caustic profile for the sheared
microlens camera (k, l) is different from the non-sheared counterpart. Namely,
the constraint to ensure a unique projection center is given by

hsi + βhsk
hui + βhuk

=
htj + βhtl
hvj + βhvl

, (15)

and the projection center is defined on a plane at a depth zβ = − hsi+βhsk
hui+βhuk

(Figure 3) by

tklS = −

hs + zβ hu + (hsk + zβ huk) (k − β ir)
ht + zβ hv + (htl + zβ hvl) (l − β jr)

zβ

 . (16)
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(a) Microlens camera arrays for
different refocused depths

(b) Microlens cameras corresponding
to surface points (SCams)

Fig. 3. Microlens camera arrays obtained considering shearing for refocusing at dif-
ferent depths for the synthetic Table dataset [9]. Shearing allows to obtain microlens
cameras with projection centers at different depths (a). These cameras obtain relevant
information for depth estimation [5] when the projection center corresponds to a sur-
face point, i.e. a SCam is defined (b). The viewpoint camera array is represented in
blue with the spacing among projection centers scaled by 4 times.

The projection matrix Pkl
S for the sheared microlens camera is obtained consid-

ering the back-projection equation (3) redefined with the LFIM HS and solving
relatively to (i, j). This gives a projection matrix defined by

Pkl
S = Kkl

S

[
I3×3 tklS

]c
Tw (17)

where Kkl
S denotes the intrinsic matrix for the sheared microlens camera and is

given by

Kkl
S =


1

hui+β huk
0 −hu−β huk ir

hui+β huk
− k huk

hui+β huk

0 1
hvj+β hvl

−hv−β hvl jr
hvj+β hvl

− l hvl
hvj+β hvl

0 0 1

 . (18)

Setting β = 0, the intrinsic matrix Kkl
S (18) and the projection center tklS (16)

reduce to the intrinsic matrix Kkl and projection center tkl defined in (7). Ad-
ditionally, if we replace β = − hsi+ dΓ→Π hui

hsk+ dΓ→Π huk
in zβ , one can see that the depth

of the projection center corresponds to the plane Π at dΓ→Π .

Generalized EPI Geometry. Considering equation (3) and the sheared view-
point cameras (13), one can obtain the EPI geometry that relates the depth of

a point with the disparity on the VIs
[
∆k
∆i ,

∆l
∆j

]T
for the sheared LF

∆k

∆i
= − hsi + zhui

hsk + zhuk
− β and

∆l

∆j
= −htj + zhvj

hvl + zhvl
− β . (19)

The EPI geometry shows that the zero disparity plane, also known as the optical
focal plane [15] of the SPC main lens is affected by the shearing operation. This
is in accordance with the creation of a virtual focal plane during the refocus
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operation that implicitly requires a shearing of the LF [15] (Figure 1.d-f). These
equations reduce to the ones presented in [12] for β = 0.

5 Experimental Results

In this section, the mappings proposed in Section 4 are validated experimentally
using the publicly available calibration dataset [6] (Dataset A) acquired with
a 1st generation Lytro camera. Namely, the viewpoint and microlens cameras
obtained after calibration of the sheared versions of the calibration dataset LFs
are compared with the cameras obtained using the mappings proposed in Section
4 with the LFIM obtained from the calibration of the non-sheared calibration
dataset.

Let us start by calibrating the non-sheared calibration dataset using the
calibration procedure [6]. The estimated LFIM H (2) and the corresponding
viewpoint (4) and microlens (6) cameras are given in Tables 1 and 2, respectively,

where k
(·)
nm denotes the entry (n,m) of the intrinsic matrix and t

(·)
n denotes the

entry n of the projection center associated with the viewpoint (i, j) or microlens
(k, l). Using the values in Table 1 and the mappings (13) and (17), one obtains
the characterization of the camera arrays for different values of disparity β.

Table 1. LFIM obtained after calibration of Dataset A [6] with hsk = htl = 0.

hsi hs htj ht hui huk hu hvj hvl hv
0.0003 -0.0013 0.0003 -0.0013 -0.0011 0.0019 -0.3508 -0.0011 0.0019 -0.3515

Table 2. Intrinsic matrices and projection centers for viewpoint and microlens cameras.
These values are obtained after applying the mappings (5) and (7) with ∆i = ∆j = 1
and ∆k = ∆l = 1, respectively.

kij11 kij22 kij13 kij23 tij1 tij2 tij3 kkl11 kkl22 kkl13 kkl23 tkl1 tkl2 tkl3
538.6 534.9 189.6 188.6 0.001 0.001 0 881.0 892.0 -307.5 -311.9 -0.081 -0.081 -0.227

The characterization of the viewpoint and microlens cameras obtained using
the mappings proposed in Section 4 is compared with the characterization ob-
tained by applying (4) and (6) to the LFIM obtained from the calibration of the
sheared versions of the calibration dataset LFs. The sheared LFs are obtained
considering different disparities β for the re-parameterization of the EPIs (shear-
ing). The disparities considered range from 0.1 to 2.0 pixels. Figure 4 depicts
the entries of the viewpoint intrinsic matrix and projection center with the dis-
parity β used for shearing considering a unitary displacement from the reference
viewpoint (ir, jr), i.e. ∆i = ∆j = 1. Similarly, Figure 5 depicts the entries of
the microlens intrinsic matrix and projection center considering ∆k = ∆l = 1.
Tables 3 and 4 represent the mean and Standard Deviation (STD) of the errors

ε(·) =
∣∣∣(·)M − (·)E

∣∣∣ / ∣∣∣(·)M ∣∣∣, in percentage, for each entry of the intrinsic matrix

and projection center for the viewpoint and microlens camera, respectively. In
the error ε(·), (·)M corresponds to the entries obtained from the mappings (13)
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and (17), and (·)E corresponds to the entries obtained from the mappings (4)
and (6).

The viewpoint mapping (13) models the changes with the disparity β very
accurately (Figure 4). In Table 3, one can see that the mean error is below
0.2% which shows that the estimate values are in accordance with the mapping
(13). The difference on the estimated values appears to be the result of the
interpolation and discretization that occurs in the shearing operation. This also
affects the position of the detected corners that are used in the calibration.

The microlens mapping (17) also models the changes with the disparity β
very accurately except for β = 0.6 (Figure 5). This disparity value is close
to the singularity that occurs for β = −hui/huk = 0.611 which causes some
numerical instability in the mapping. Indeed, in Table 4, one can see that the
mean error considering all disparity values is below 4.5%. Nonetheless, removing
the disparity β = 0.6, one obtains a mean error below 0.5% which shows that
the estimate values are in accordance with the mapping (17). Notice that the
viewpoint mapping obtains a lower error than the microlens mapping. This can
be justified by the strategy of the calibration procedure [6] that calibrates a SPC
using detected corners on VIs.

Table 3. Mean and STD error, in percentage, for each entry of the viewpoint intrinsic
matrix and projection center.

kij11 kij22 kij13 kij23 tij1 tij2
0.022± 0.018 0.022± 0.017 0.004± 0.003 0.002± 0.002 0.174± 0.067 0.100± 0.075

Table 4. Mean and STD error, in percentage, for each entry of the microlens intrinsic
matrix and projection center. First line considers all disparity values while the second
line excludes the disparity β = 0.6.

kkl11 kkl22 kkl13 kkl23 tkl1 tkl2 tkl3
1.85± 6.45 4.45± 19.07 1.84± 6.45 4.44± 19.07 1.89± 6.38 1.89± 6.38 1.90± 6.38

0.41± 0.44 0.19± 0.18 0.40± 0.44 0.18± 0.18 0.47± 0.42 0.47± 0.42 0.48± 0.43

6 Conclusions

In this work, one defined the geometry of the multiple camera arrays that can be
obtained from the rays captured by a SPC. This geometry extends the charac-
terization of the microlens and viewpoint camera arrays found in the literature
[1, 2, 4] and that are associated with the images that can be obtained directly
from the LF acquired by a SPC. The mappings proposed for the different mi-
crolens and viewpoint cameras obtained after shearing were validated using a
publicly available dataset and calibration toolbox [6]. The results show that the
mappings proposed are in accordance with the calibration estimates obtained.

In terms of future work, we want to characterize the camera arrays originated
considering a sampling on the microlens coordinates (k, l) instead of the sampling
on the viewpoint coordinates (i, j) considered in this work.
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(a) (b) (c)

Fig. 4. Variation of viewpoint camera intrinsic matrix and projection center with dis-
parity β for shearing. These entries are estimated considering that ∆i = ∆j = 1. The
scale factors of the intrinsic matrix kij11 and kij22 are represented in (a). The principal

point
[
kij13, k

ij
23

]T
is depicted in (b). In (c), the x- and y- components of the projection

are presented. The z-component of the projection center is not represented since it is
always zero regardless of the disparity β considered for shearing.

(a) (b)

(c) (d)

Fig. 5. Variation of microlens camera intrinsic matrix and projection center with dis-
parity β for shearing. These entries are estimated considering that ∆k = ∆l = 1. The
scale factors of the intrinsic matrix kkl11 and kkl22 are represented in (a). The principal

point
[
kkl13, k

kl
23

]T
is depicted in (b). The x- and y- components of the projection are

presented in (c) while the z-component is presented in (d).
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