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Abstract

Disparity estimation from lightfields is usually based on multi-view stereo
geometry, epipolar plane image geometry, or on testing some disparity hy-
potheses using shearing. Recently, the concept of surface camera image
has been used to improve disparity estimation. In this work, we intro-
duce the idea of considering a surface camera image as a generalization
of shearing and evaluate the capabilities of using surface camera images
in disparity estimation.

1 Introduction

Plenoptic cameras are capable of discriminating the contribution of each
light ray emanating from a particular point. The collection of rays cap-
tured by these cameras is called a lightfield [8].

In a plenoptic camera, a point in the object space is projected into
multiple points in the image sensor. The multiple projections allow to re-
cover disparity assuming no particular position for the cameras, e.g. using
multi-view stereo [1], or assuming the cameras define a linear path, e.g.
using the epipolar plane image (EPI) geometry [6]. For the EPI analysis,
one can consider gradient based approaches using standard image gradi-
ent operators [4] or structure tensors [12]. Nonetheless, these approaches
limit the disparity range that can be estimated accurately to one pixel [6].
Shearing of the lightfield [6] increase the disparity range while maintain-
ing the gradient operators constant.

Other strategies test predefined disparity hypothesis by shearing the
lightfield and evaluating correspondence and defocus cues on the result-
ing lightfield [11]. These methods assume lambertian surfaces free of
occlusion. Recently, the concept of surface camera images (SCams) [3]
has been introduced to identify types of surfaces (lambertian or specular)
and occlusions that allow to adapt the metrics used to evaluate correspon-
dences. Although shearing and SCams have been presented as alternative
methods, we show that these methods are related and that the SCam is a
generalization of the shearing operation.

2 Surface Camera Images as a Generalization

A SCam is a camera that collects rays that intersect at an arbitrary point in
the object space [13]. These rays can emanate from different points if the
camera’s projection center is located on free space (camera A of Figure
2) or is located on a surface point which is partially occluded (camera B
of Figure 2). On the other hand, the rays emanate from a common point if
the projection center of the camera is defined on a surface point (camera
C of Figure 2).

Considering the lightfield in the object space LΠ (s, t,u,v) acquired by
a plenoptic camera with the plane Ω in focus (Figure 1), one can obtain a
SCam with projection center at point (q,r) of plane Γ. LΠ (s, t,u,v) col-
lects rays Ψ̃ΨΨ = [s, t,u,v,1]T that are parameterized using a point (s, t) and
a direction (u,v) defined on a plane Π in metric units [10]. Assuming that
the plane Γ is at a distance d from the plane Π, one can re-parameterize
the lightfield captured by the plenoptic camera relatively to the plane Γ

[2], LΓ (q,r,u,v), by

Ψ̃ΨΨΓ = D Ψ̃ΨΨ , (1)

where

D =


1 0 d 0 0
0 1 0 d 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (2)

Figure 1: Geometry of a plenoptic camera. On the left, the lightfield in
the image space is parameterized using pixels and microlenses indexes.
On the right, the lightfields in the object space are parameterized using
a point and a direction, and can be parameterized on an arbitrary plane
regardless of the original plane Ω in focus.

Figure 2: SCams considering different intersection points for the captured
rays. The projection center of Camera A does not correspond to a surface
point and, therefore, the camera collects rays that emanate from arbitrary
surface points. Camera B collects rays that emanate from different points
of the surface due to occlusion. Camera C collects rays that emanate from
the same surface point. Adapted from Yu et al. [13].

and Ψ̃ΨΨΓ = [q,r,u,v,1]T correspond to rays parameterized by a point (q,r)
and a direction (u,v) on plane Γ. Notice that the directions remain un-
changed with the re-parameterization. Mapping the lightfield in the object
space LΠ (s, t,u,v) to the lightfield in the image space L(i, j,k, l) by the
intrinsic matrix H introduced by Dansereau et al. [5], one obtains

Ψ̃ΨΨΓ = D H Φ̃ΦΦ , (3)

with

H =


hsi 0 hsk 0 hs
0 ht j 0 htl ht

hui 0 huk 0 hu
0 hv j 0 hvl hv
0 0 0 0 1

 , (4)

where Φ̃ΦΦ = [i, j,k, l,1]T correspond to rays that are parameterized by pix-
els and microlenses indexes. The new intrinsic matrix HΓ = D H allows
to relate the lightfield in the object space LΓ (q,r,u,v) and the lightfield
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in the image space L(i, j,k, l). The mapping between the lightfields al-
lows to define a constraint to identify the rays that intersect at an arbitrary
point of the plane Γ. Let ΦΦΦa and ΦΦΦb be two rays with the same coordi-
nates (q,r) on plane Γ, by taking their difference one defines a constraint
on the lightfield coordinates to define a SCam[

0
0

]
= Hqr

i j

[
i− ir
j− jr

]
+Hqr

kl

[
k− kr
l− lr

]
, (5)

where (ir, jr,kr, lr) are reference coordinates to enforce the constraint, and
Hqr

(·) corresponds to 2×2 sub-matrices of HΓ obtained from selecting the
entries of the first two rows, denoted by qr, and selecting either the entries
of the 1st and 2nd columns, denoted by i j, or the 3rd and 4th columns,
denoted by kl. Using the constraint (5) and assuming that we want to
maximize the number of rays (see Section 4.1 of [10]) that define a SCam,
one obtains a sampling on (i, j) for disparities lower or equal than one

k = kr +βik (i− ir) ∧ l = lr +β jl ( j− jr) , (6)

and a sampling on (k, l) for disparities greater than one

i = ir +β
−1
ik (k− kr) ∧ j = jr +β

−1
jl (l− lr) . (7)

The parameters βik = − hsi+d hui
hsk+d huk

and β jl = −
ht j+d hv j
htl+d hvl

correspond to the
disparities considered on the viewpoint images 1 for a point at depth d
[10]. The sampling defined in equation (6) correspond to the sampling
performed during the shearing operation defined by Tao et al. [11] con-
sidering βik = β jl = 1− 1

α
.

The SCam defines a camera with an arbitrary position for the pro-
jection center but one is interested on cameras whose projection centers
lie on the scene surfaces. These cameras collect rays that originate at the
same surface point. On the other hand, in shearing, one wants to shear
the EPIs in order to have the rays that originate at a given surface point in
the same microlens, i.e. the information present in the microlenses of the
sheared lightfield correspond to the SCams. Furthermore, the SCams are
a generalization of the shearing operation on the lightfield by consider-
ing the sampling on (k, l) for disparities greater than one. Remember that
shearing considers the sampling on (i, j) regardless of the disparity being
evaluated.

3 Results

In this section, we compare the disparity maps obtained from evaluating
different correspondence cues for the Greek dataset of the 4D Lightfield
Benchmark [7]. The dataset is not fully analyzed, but instead a small
region with 80.56% of pixels with absolute disparity values greater than
one. The dataset is illustrated in Figure 3.a-b. Notice that a dense dis-
parity map is obtained considering a disparity estimation framework that
comprises several steps like filtering and refining the disparity cost vol-
ume [11] or a densification strategy like Total Variation regularization
[9]. Nonetheless, in this work, we only evaluate the quality of the initial
disparity map.

The disparity maps are obtained by testing different disparity hypoth-
esis and evaluating the metrics that define the correspondence cues [3, 11]
on the sheared lightfield and on the SCams. The occlusion is handled us-
ing the strategy defined in Chen et al. [3]. The results are exhibited on
Figure 3.c, and the disparity errors are summarized in Table 1. The er-
rors in this table discard pixels in homogeneous regions. Table 1 shows
that the analysis using SCams provides more accurate results for pixels
with ground truth disparity greater than one. For example, using the cor-
respondence cue [3] (denoted as CNS), the disparity estimation improves
by 64.19% for pixels with disparity greater than one.

Cues Shearing Disparity Error SCams Disparity Error
|Disparity| > 1 |Disparity| ≤ 1 |Disparity| > 1 |Disparity| ≤ 1

Correspondence [3, 11] 3.9819 1.4138 3.9811 1.4322
Correspondence CNS [3] 5.2353 1.7707 3.3607 3.2936

Table 1: Disparity errors obtained for the Greek dataset of the 4D Light-
field Benchmark [7] by evaluating correspondence cues [3, 11].

1A viewpoint or sub-aperture image is obtained by selecting and combining the rays that
reach the same pixel of each microlens, i.e, by selecting the pixel (i, j) of each microlens (k, l).
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(a) Central Viewpoint (b) ROI and GT (c) Corresp. [3, 11]
Figure 3: Greek dataset [7] used to evaluate the disparity map obtained
using shearing and SCams. (a) central viewpoint image. (b) selected
region and corresponding ground truth disparity map. (c) disparity maps
from correspondence cue [11] applied to a subset of unoccluded rays [3]
on the sheared lightfield (first row) and on the SCams (second row).

4 Conclusions

In this work, we defined the constraint that allows to obtain a SCam for a
plenoptic camera using the camera model defined by Dansereau et al. [5],
and showed that a SCam is a generalization of the shearing operation on
the lightfield by introducing a sampling on the microlenses coordinates
(k, l). The capabilities of the SCams were evaluated on the Greek dataset
of the 4D Lightfield Benchmark [7] using different correspondence cues
[3, 11]. The results obtained suggest that the SCams are more accurate
for pixels with disparity greater than one.
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