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Abstract

This paper presents a method for 3D model-based trackinglafed ob-
jects using a sampling methodology. The problem is fornedlah a Monte
Carlo filtering approach, whereby the state of an object pgesented by
a set of hypotheses. The main originality of this work is asestation
model consisting in the comparison of the color informatiorsome sam-
pling points around the target’s hypothetical edges. Onctirdrary to ex-
isting approaches the method does not need to explicitlypooenedges in
the video stream, thus dealing well with optical or motioarbiThe method
does not require the projection of the full 3D object on thagm, but just of
some selected points around the target's boundaries. Thigsaa flexible
and modular architecture illustrated by experiments peréal with different
objects (balls and boxes), camera models (perspectivagiogtric, dioptric)
and tracking methodologies (particle and Kalman filtering)

1 Introduction

Many applications require the detection, tracking and pstenation of known 3D ob-
jects. Particularly in robotics research, objects oftevehaell known shapes and colors,
thus requiring computer vision tools for color-based ditacand tracking methods. For
example, research in robot grasping and manipulation @$same objects with signif-
icantly saturated colors to simplify the foreground segtagon problem [12]. In this
paper we blend 3D model-based tracking and color-baseduregasnt models in a prac-
tical algorithm for tracking known colored objects.

3D model-based tracking methods have been classicallgased in a non-linear op-
timization framework [10]. A cost function expressing thésmatch between predicted
and observed object points is locally minimized as a fumatibobject’s pose parameters,
usually by linearizing the relation between state and nmessents. These approaches
often have limited convergence basins, requiring eithealistarget motions of very pre-
cise prediction models. In this paper we overcome this prolby addressing the pose
estimation and tracking problem in a Monte Carlo sampliagrfework [4]. The state of
the target is represented by a set of weighted particless@heights (or likelihoods) are
computed by projecting their features to the image and nrajchith the assumed model
of the object. The method, therefore, does not require tigatization between the state
and the measurements, allowing the design of a simple andlarddacking architecture.

Despite the well known advantages of Monte Carlo based rdetho maintaining
several alternative explanations of the data, not many svhelwe proposed their use in
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a 3D model-based context. This is probably due to the ndgessirendering the ob-
ject pose in the image plane for each particle in the stateespehich constitute a high
computational cost. There are, though, a few examples dicapipns of particle filters
in 3D model-based tracking. For instance [9] employs a @garfilter [7] and an edge
based measurement model for 3D model-based tracking oftsbjeut requires the ex-
plicit computation of edges in the incoming video frames fasi GPU computation for
real-time image rendering. In [15], a particle filter wasoalsed for the estimation of
camera pose from the measurements of 4 edge junctions ormvankglanar surface. A
local search for edges around the expected values must foemped at each time step.

Our work distinguishes from the above ones by the followaxgg: (i) our observation
model does not require the explicit rendering of predictedges for each particle but just
of a set of selected points around the object’s visible serféi) it does not require explicit
edge detection on the incoming stream of images; and (iii3és the color model of the
object to enrich and add robustness to the image measurenidt first two facts permit
a faster evaluation of each particle’s likelihood, everh# tameras projection is non-
linear. The last two facts make the method more robust todither due to fast motions
of the object or to optical defocus. Altogether, our modeillfiates the application to
arbitrary non-linear image projections. We illustratestfact with fish-eye lens cameras
and catadioptric systems [5], as well as with conventiopaigpective) cameras.

The paper is organized as follows. In Section 2 we describenethod’s architecture,
divided in two major components: sensor and tracking maduection 2 details in par-
ticular the sensor module, namely how measurements armebtxom the images, how
likelihoods are assigned to different pose hypothesis amddifferent camera projection
models can be easily incorporated. Section 3 presentsabkirig module. It fuses the
information coming from the sensor with the current tagstate using a given motion
model, and proposes the target’s hypotheses for evalubyighe sensor module in the
next time step. In Section 4 we present some experimentaltsan realistic scenarios
for tracking different types of objects with different caragrojection models and track-
ing methods, illustrating the flexibility of the frameworkn Section 5 we present the
conclusions of the paper and directions for future work.

2 3D Tracking with Sample-Based Observations

This section presents the proposed architecture, desigraehl with several projection
models and tracking methods, on a sampling based sensaligraraThe important as-
pects of the framework will be described in the following gguaphs and include the
description of the state representation, the observatiotetrand tracking. A graphical
description of the architecture is illustrated in Fig. 1.

State Representation: The state vector of the target, denotedxas contains its 3D

pose and derivatives up to a desired order. Itis represéptadet of state hypotheses, or

particles,Xt(i), i € {1,...,Np}, with Ny the number of particles. This set is generated as

an approximation to the statepriori density functionp(Xt|y11—1), computed from the
observatiory based on color histograms in the previous time step or aliaétion time.
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Figure 1: The proposed architecture.

Sensor Module: Since Harris proposed the RAPID tracking system [6], mosh&idel
based tracking systems compute image edges as the 2D &etigepport the pose es-
timation procedure. Instead, we propose a measurementl inasied on sampling just
some selected points in the images. These points are thecpoojs of 3D points sug-
gested by the pose hypotheses generated in the trackinglendthis avoids time con-
suming edge detection processing or rendering the fulloblojevdel in the image plane.
Also, it facilitates the utilization of non-linear projéah models, since only projection of
points is required. The sensor model is composed by a chdouomodules (Fig. 1).

3D Point Generator — From the 3D pose hypotheses provided as input to the sensor
module, we determine points around the object edges. Tlheisdbat the color and lu-
minance difference around the object edges is an indicijoose hypothesis likelihood.
We consider two different object shapes: spheres and cqoigkedral objects. Notwith-
standing the model can be easily extended to general palghalgjects by exploiting the

current knowledge in computer graphics [9]. For each stya;belﬂnesi@(t("), and given the

particular 3D geometric object model, a set of 3D points imegatewt(')’, wheret is the
time stepj is the particle index, anglindexes the points in the objects contour vicinity.

In the case of polyhedra, we use a 3D model that consists dfextion of faces and
edges. To each couple (face,edge) we associate a set of B3 pwit lie on the specific
face, near the edge (Fig. 2.a). To each edge we associat@bmehts that lie on the
corresponding edge of an expanded polyhedron (Fig. 2.d}.€kpanded polyhedron is
built multiplying by a constant the vectors that join the tegrof volume of the original
polyhedra to its vertices. The 3D points of this model aredusedefine the areas of the
image where the color is sampled in order to build color lgstmns. This is done by
roto-translating the model and then projecting the 3D oimtto the image.

For spheres, we define two sets of 3D points that when prajestto the image fall
on the internal and external boundary of the sphere’s siitieu These 3D points lie on
the intersection between the plane orthogonal to the limaecting the projection center
to the center of the sphere and two spherical surfaces, dheawadius smaller than that
of the tracked sphere, the other with a radius greater than th

Image Projection — This module converts 3D point coordinatﬂz[g>j to corresponding



Figure 2: Polyhedron 3D model. (a) and (d) show the locatiothe 3D points of the
model. (b) shows one particular projection of the object iiclh edges a, b, ¢, d, e and f
form the silhouette of the projected figure, while g, i and & aon-silhouette edges. (c),
(e) shows the areas sampled in the image to build he intendatgternal histograms. (f)
shows the couples of areas associated with non-silhoudgtese

projections in the image plané'”. One of the advantages of our approach is that any
projection model can be employed. In this work we use the¥ahg types of cameras:

(i) a catadioptric camera modeled by the unified projectiadet [5]; (i) a camera with

a fish-eye lens modeled by constant angular resolution; idhdr{d a standard camera
modeled by the perspective projection model. Definings the radial distance in the

image sensop = |ut(')J |, the above projection models are respectively:

[+m
N or p=f-atan(r/z) or p=k-r/z 1)
wherel, m, k and f are parameters, arglr are the cylindrical coordinates blf')‘.
Likelihood Measurement — The 2D points coordinates generated by the previous pro-

cess are sampled in the current image, and their photonrgtrienation is used to obtain
each particle’s IikeIihoodvt('). This approximates the stapesterior probability density
function, represented by the set of weighted partil(l@swt('). For color modeling we use
independent normalized histograms in the HSI color spab&hndecouples the intensity
(1) from color (H and S). We denote by, = (h ... .., h§ o) theB-bin reference (ob-
ject) histogram model in channe& {H,S 1}. An estimate for the histogram color model,
denoted byh{ = (hf,,...,h§ ), can be obtained as

hx=BY &b}, i=1...B )

uc?

% is the region where the histogram is computefde {1,...,B} denotes the histogram



bin index associated with the intensity at pixel locatioim channelk; d, is a Kronecker
delta function a; andg is a normalization constant such tigft ; h¢, = 1.

We defineh™%! h" andh®“ as a reference (object) color model, the inner boundary
points and the outer boundary points histogram, respégtive defineh®9eA andhdeB
as the histograms of each of the two sides of itRenon-silhouette edge (see Fig.2f).
To measure the difference between histograms we use théaBhatyya similarity as in
[3,13]:

B
S (hy,hg) = Z Vvhihi2 (3)

The resulting distance used herein is
_l—yo-‘rKl(l—yl)-‘er(l—yz))_y (@)
Ki+ko+1

wherey is a coefficient that modulates the distance based on the etnfilprojected 3D
points that fall onto the image, = In( =9 PANsralio) 5y

72=(1

(h_sideA h_sideB)
i > Ui

. . n ..
Sy = y(hmodeL hm)7 A = y(hout’ hm)7 Py = Z:Oy . (5)

are respectively, the object-to-model, object-to-backgd and mean-side-to-side (non-
silhouette edges) similarities.

The rationale for this definition is that the distance meghiould be high when candi-
date color histograms are different from the referencegrstm and similar to the back-
ground. The distance metric should also be high when thdiglésor no difference in
color on the sides of non-silhouette edges. Paramateed k, allow to balance the
influence of the different contributions. They were set t6 4nd 0.6 respectively, for
the case of the polyhedron while for the sphere they wereos&t and 0. The data
likelihood function.Z is modeled as a Laplacian distribution over the distanceimet

p(Vt | XE')) Oe % . Inour experiments we set= 1/30.

Pose Measurement — Despite it is more informative to have a description of ttaes
as a weighted set of particles, for some purposes it may beluse€ondensate this infor-
mation in a single measurement. We take either the best tesigiarticle, i.e maximum
a posteriori (MAP) or the average of the most significant ones, thatnigymum mean
square error (MMSE). We term this process a particle fusion, which allawgo obtain a
single observation, that will be used to maintain the unialibgl (Gaussian assumption)
needed for the linear propagation, e.g. in the Kalman filkdso, for visualization and
evaluation purposes, it is often convenient to considengisivalue representative of the
system state.

Tracking Module: We use classical Bayesian inference to propagate the sfatenia-
tion between two consecutive time steps. This will be dethkiih Section 3.

3 The Tracking Module

In this work several trackers are possible to be used. InphEer we use two filtering
techniques: (i) particle filtering (PF), and (ii) Kalman diling (KF). In following we
detail each one of the filtering techniques, and the commadiommodel.



3D particle based tracker: In this section we describe the method used for 3D target
tracking with particle filters (see Fig. 3). We are interdsite computing, at each time

t € N, an estimate of the 3D pose of the target. We represent tdeistate of the object
(“state-vector”) defined by a random variabfe € R™ whose distribution is unknown
(non-Gaussian)yy is the dimension of the state vector. The state sequéXge € IN}
represents the state evolution along time and is assumed &m lunobserved Markov
process with some initial distributiop(Xo) and a transition distributiop(X¢|Xt_1).

i i)\ N ; i @) @) \Np
X(Z) w ()7 P eI, Particle __, Particle _i , (X w VP
X7 e }’_ 1 Resampling Prediction { t+1 "+ 1ti=1

Figure 3: Modules of the Particle filter tracker.

The observations are represented by the random vardatlee IN}, y; € R™. For
tracking, the distribution of interest is the posterjuiX;|y11), i.€., the filtering distri-
bution, wherey1: = (y1,...,Yt) are the observations collected up to time instanin
Bayesian sequential estimation, the postenmiX;|yi+) is computed following the two
step recursion

prediction  p(Xulyz-1) = [ POXuIXe2)P(Xu-1lyr 2)dXe 1
filtering  p(Xt|y11) O p(ye|[Xe) p(Xt]y11-1)

(6)

This recursion requires the specification of the motion rhqueX;|X;_1) and likeli-
hood modelp(y;|X;) along with the assumption$; L y11_1|Xi—1 andy: L y1t—1|Xt,
where | stands for independence. A more rigorous and broad descripf Monte
Carlo probabilistic estimators can be found in [1,11]. Tlasib idea is simple, start-
ing from a weighted set of sampléxfgl,wfgl}i'\‘zl approximately distributed according
to p(Xi—1|y11—1), new samples are generated from a chosen proposal digirilggt). In
this work the proposal follows the state dynamics, and the set of weighted particles,

{Xt(i),wt(i)}, is approximately distributed according poX:|y11), i.€.

W 0w p(ye XM px Y x )
t—1 i i
alx X, yo)

— ", p(yeX{") (7)

3D Kalman based tracker: The motivation for the Kalman based tracker (see Fig. 4)
comes from control applications where it is required to hawamooth state estimation
in each frame. Using PF’s the state estimation is usuallgriak be the mean or the
median of the particles, which are not particularly aceiestimates [10]. This can result
in motion estimates that are not as smooth as desired, asdatleunot suitable for the
generation of control signals, leading to saturation orsihvealled “bang-bang” effect.

The KF consists in recursive computation of the mean andri@nee as follows (see

(6))
prediction:  X; =AX;_1 filtering:  X¢=X{ +Ke(XM —HX{)
Pr =AP AT +Q Pe= (I — K¢He) Py (8)
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Figure 4: Modules of the Kalman filter tracker.

whereX;, P; are the mean and covariance matricasQ are the system dynamics and
its uncertaintyH, K = P H{ (H{P; H{ +R)~! are the observation matrix and Kalman
gain; XM is the state measurement computed in the sensor model, X{IBRMMSE).

The noise covariandR is assumed to be constant, although it can be be computedhat ea
time step.

Finally, the predicted stat)étﬂ‘t is spread in a number ®f, particles following the
uncertainty of the predicted value of the covariance mafrhis is the main difference in
our tracking module regarding a classical Kalman filter, améquired due to our particu-
lar sample-based sensor module. This is similar to the Unieddalman Filtering [8], in
the sense that that filter computes the covariance by prtipggaset of deterministically
chosen points, i.esigma points, chosen in such a way that their sample mean and sample
covariance correspond to the mean and the covariance ofdabesian being estimated.
However, in our case these points do not suffice to cope wahptt of the likelihood
which is hon Gaussian and largely multi-modal.

Motion model: In order to accommodate to any real object motion, we use a<kau
distributed one, giving no privilege to any direction of rioot

P(Xt|Xt—1) = A (X¢|Xi-1,\) 9)

where_#"(.|p,Z) holds for Gaussian distribution with meanand covarianc&, andA
stands for the diagonal matrix with the variances for randatk models on the compo-
nents of the object state model. This approach has widely beed (e.g. [2,14]).

In this work two cases are addressed: (i) spherical objett(i@npolyhedral object.
For the first case, the state vector consists of the 3D Cartgsisition and linear velocities
of the ball,X; = [xy zxy ZT. The motion is modeled by a constant velocity model, i.e.
the motion equations correspond to a uniform accelerativimg one sample time:

xa=lp ' xes [(g))ll} i 4o

wherel is the 3x 3 identity matrix,At = 1, anda; is a 3x 1 white zero mean random
vector corresponding to an acceleration disturbance. Y& mnce matrix of the random
acceleration vector is usually set experimentallg@ga,) = o2l.

For the polyhedral object, the state vectoKis= [py; g¢] wherep; = [xy Z]T denotes
the position of the mass-center of the object @pd= [gw Ox Oy q]" is a quaternion
representing the object orientation. To model the dynaridhis case we use a constant
pose modelp1 = pt + Np and g1 = q¢ * g, Wherex stands for quaternion product,
Np is Gaussian noise ang} is a quaternion generated by sampling Euler angles from a
Gaussian distribution.



Figure 5: Tracking a jumping ball in a catadioptric sensap:TParticle Filter. Bottom:
Kalman filter. Frames: 113, 122, 146.

4 Experimental Results

We have conducted an extensive evaluation under the progcm@mework in realistic
scenarios. We illustrate the performance of the methodkreetexperiments using in
each one a distinct cameta (i) catadioptric, (ii) fisheye (constant angular resain)i
and (iii) perspective.

In the first experiment we illustrate the performance of the tracker on images ac-
quired with the catadioptric vision system. This sensoramposed by a perspective
camera looking upright to a convex mirror, providing omredtional view in the az-
imuth direction and an orthographic view of the ground plamhis type of systems is
characterized by strong geometrical distortions and aphitur (see Fig.5). The tracked
object is a ball on a typical RoboCup Middle Size League (MStgnario. We use the
constant velocity motion model defined in (10). The covaré&amatrix of the random
acceleration vector was experimentally tunedde(a;) = 02, with 0 = 120mm/framé.

Fig. 5 shows some snapshots of the sequence, illustratingadbking results with both
the Kalman and the Particle Filters.

In thesecond experimentve use a fisheye vision system (a dioptric camera coupled
with a fisheye lens) to track a ball in the RoboCup MSL scenafiigure 6 shows the
tracking performance under partial occlusion and the cdsmrevthe target passes close
to another identical ball. The motion model is the same afisteexperiment. It is inter-
esting to note that the Kalman filter, as compared to the dhafilter with MAP/MMSE
pose estimation, takes advantage of the motion model toratmore centered estimate
of the position in the cases of large occlusions or confugiarearby objects (see cols. 4
and 6 of Fig. 6; the MAP/MMSE are shown by the black/white ylots

In the third experiment we use an off-the-shelf web camera to track a box being
manipulated by the user. We use the constant pose motionlrdefieed before. The
standard deviation for the positional noise was set to 15framg, while that of the
rotational noise was set to 0.1 rad/frame, in any directidhe results are presented in
Fig. 7 where we can observe good performance even in the €asetial occlusion.

1The results can be also evaluated through the accompanylags:i



Figure 6: Ball tracking under occlusion (cols..4) and having two close targets
(cols. 5.8) in a fisheye lens camera. Columns 1 and 5 are full-size iméfe other
ones just show the region of interest). Top/bottom comparédke vs Kalman filters.

Figure 7: Tracking a box with a perspective camera. Topidlafilter. Bottom: Kalman
filter. Frames: 11, 207, 291.

5 Conclusions

We have presented a novel observation model for 3D modethsseking. The method
uses color features thus avoiding both explicit edge etitmafrom images and full object
appearance rendering. Rather it is based on the computtibrtomparison of color
histograms obtained from a sparse set of points in the imagisgg from likely target’s
posture hypotheses. Only sparse point rendering (projgds required, which facilitates
the utilization of arbitrary linear or non-linear camerajection models. Also, being a
method based on sampled hypotheses, it fits nicely with thicleafiltering paradigm.
Anyway, it can also be used with more classical methodstltike<alman filter, whenever
Gaussianity is a reasonable assumption to rely on.

In future work we will look at variations of the observatiorodel to improve likeli-
hood estimation, e.g. devising better ways to model thedamie changes induces by
orientation changes in the target’s surfaces. Also, we lailk at ways to reduce the
number of used particles. This may be related to varyingdst of the sampling points



from the boundaries of the targets. Longer distances mayigesmoother likelihood
estimates, and an annealed patrticle filtering methodoldghtibe designed.
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