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Abstract—Inspired by the extraordinary ability of young
infants to learn how to grasp and manipulate objects, many
works in robotics have proposed developmental approaches to
allow robots to learn the effects of their own motor actions on
objects, i.e., the objects affordances. While holding an object,
infants also promote its contact with other objects, resulting in
object–object interactions that may afford effects not possible
otherwise. Depending on the characteristics of both the held
object (intermediate) and the acted object (primary), systematic
outcomes may occur, leading to the emergence of a primitive
concept of tool. In this paper we describe experiments with
a humanoid robot exploring object–object interactions in a
playground scenario and learning a probabilistic causal model
of the effects of actions as functions of the characteristics of both
objects. The model directly links the objects’ 2D shape visual
cues to the effects of actions. Because no object recognition
skills are required, generalization to novel objects is possible
by exploiting the correlations between the shape descriptors.
We show experiments where an affordance model is learned in
a simulated environment, and is then used on the real robotic
platform, showing generalization abilities in effect prediction.
We argue that, despite the fact that during exploration no
concept of tool is given to the system, this very concept may
emerge from the knowledge that intermediate objects lead to
significant effects when acting on other objects.

I. INTRODUCTION

Many important human behaviors require making objects
contact with each other. A fundamental cognitive ability to
master such skill is to understand the relationships between
the physical properties of the objects’s surfaces that enter
into contact. For instance, to pile objects we must put into
contact their flat surfaces to assure stability; to bring closer
objects out of reach we pull them with elongated objects; to
fit objects together we match concave parts on one object
to corresponding convex parts on the other. Infants and tod-
dlers achieve this ability throughout a developmental process
spanning several stages. At 6 months of age infants already
manipulate objects in a differentiated manner depending on
object’s properties [1]. During the second half year infants
become sensitive not just to objects and surfaces alone, but to
the affordances entailed by the relation between the two [2],
[3]. At the second year children begin using objects for
increasingly complex problem solving and tool use [4]–[6].
While a number of researchers have suggested that tool use
requires a cognitive leap beyond information that is directly
perceived, thus requiring the ability to engage in novel forms
of symbolic or relational thinking [7], a new wave of research
proposes an alternative view in which tool use is seen as

an extension of the perception-action coupling that infants
show during the first year of life; therefore, the concept of
tool may emerge from the detection of possible affordances
between objects or object parts, based on information that is
directly perceptible [5]. From this perspective, the trial and
error attempts that precede successful tool use can be seen as
exploratory behaviors, providing opportunities for affordance
learning.

Figure 1. The iCub humanoid playing with objects.

In this paper we investigate how the iCub [8] humanoid
robot can learn the affordances between a hand held object
(intermediate) and an acted object (primary), in analogy to
developmental processes occurring in the second half year of
young infants. We adopt a probabilistic model of affordances
relating the shape properties of the intermediate and primary
objects with the effects of robot’s motor actions, measured
as relative displacements of the primary object. This model
is learned by performing numerous experiments on a set of
objects displaced on a table (Fig. 1). One of the objects
is selected for grasping (intermediate object) and the other
object is selected to be acted on, by making the free surface
of the held object impact on it according to a set of possible
directions. Objects and actions are randomly selected during
the learning process and a causal model of the occurrences
is obtained in the form of a Bayesian Network [9].

Object’s surfaces are characterized by pre-categorical
shape descriptors. We do not perform any object recognition
since it is not the class of an object but its physical char-
acteristics that ultimately determine the affordance. Instead,
we compute a set of visual features that represent geomet-
rical properties (e.g., convexity, roundness), which allows to
generalize previously acquired knowledge to new objects. It



is on the basis of human intelligent behavior and creativity
the ability to infer function of novel objects from shape
similarities with known ones.

For practical purposes, the model (Bayesian Network) is
learned on the iCub simulator [10], but the used perceptual
features are shown to generalize well to the real robot. We
test several ways to learn the structure of the model, and
compare to the baseline in [11]. After the model has been
learned, we demonstrate its applicability and generalization
with the real robot platform, in a prediction task.

The rest of the paper is organized as follows. After
reviewing the state of the art (Sec. II), in Sec. III we
present our computational model of affordances, proposing
different possible structures. Then, in Sec. IV we describe
the experimental setup and in Sec. V we report the results of
our experiments, that show the estimation and generalization
properties of the different structures. Finally, in Sec. VI we
draw our conclusions.

II. RELATED WORK

In his highly influential work [12], Gibson defines affor-
dances as action possibilities available in the environment
to an individual, therefore depending on its motor abilities.
The concept of object affordances can be very powerful in
robotics since it allows to capture the most informative object
properties in terms of the actions that a robot is able to
perform.

A number of computational models have been investigated
in the robotics literature to learn object affordances and use
them for prediction [13], imitation [13], [14], planning [13],
[15], tool use [16]–[19], and language grounding [20], [21].

The early work of Fitzpatrick et al. [22] proposes an
ecological approach to affordance learning, putting forward
the idea that a robot can learn affordances just by acting
on objects and observing the effects: more specifically, they
describe experiments in which a robot learns about the roll-
ability affordance of objects, by tapping them several times
and observing the resulting motion.

In the framework presented by Montesano et al. [13], ob-
jects affordances are modeled with a Bayesian Network [9], a
general probabilistic representation of dependencies between
actions, objects and effects; they also describe how a robot
can learn such a model from motor experience and use
it for prediction, planning and imitation. To achieve better
generalization, they represent objects in terms of a basic set
of perceived visual features; for example, the robot learns
that spherical objects roll faster than cubic ones when pushed.
Since learning is based on a probabilistic model, the approach
is able to deal with uncertainty, redundancy and irrelevant
information.

The concept of affordances has also been formalized under
the name of object–action complexes (OACs, [23]); from a
functional perspective in robotics, the terms affordances and
object–action complexes point to the same general concept.

While most works consider actions that are directly applied
to a single object, a few of them deal with multi-objects

scenarios, either in terms of tool use [17], [18] or pairwise
object interaction [15].

Sinapov and Stoytchev [16], [17] investigate the learn-
ing of tool affordances as tool–behavior pairs that provide
a desired effect. The learned representation is said to be
grounded in the behavioral repertoire of the robot, which
knows what it can do with an object using each behavior.
However, what is learned are the affordances of specific tools
(i.e., considered as individual entities), and no association
between the distinctive features of a tool and its affordances
is made. The generalization capabilities of the system are
limited to dealing with smaller and larger versions of known
tools.

An interesting approach has been proposed by Jain et
al. [18], in which a Bayesian Network is used to model tool
affordances as probabilistic dependencies between actions,
tools and effects. To address the problem of predicting the
effects of unknown tools, they propose a novel concept of
tool representation based on the functional features of the
tool, arguing that those features can remain distinctive and
invariant across different tools used for performing similar
tasks. However, it is not clear how those features are com-
puted or estimated, if they can be directly obtained through
robot vision and if they can be applied to different classes of
tools.

Moreover, it is worth noting that in [16]–[18] the properties
of the acted objects are not considered; only the general
affordances of tools are learned, regardless of the objects
that the tools act upon.

The recent work of Moldovan et al. [15] considers a multi-
object scenario in which the relational affordances between
objects pairs are exploited to plan a sequence of actions to
achieve a desired goal, using probabilistic reasoning. The
pairwise interactions are described in terms of the objects
relative distance, orientation and contact; however, they do
not investigate how these interactions are affected by different
geometrical properties of the objects.

III. PROBABILISTIC MODEL OF OBJECT AFFORDANCES

We follow the framework of [13], where the relation-
ships between an acted object, the applied action and the
observed effect are encoded in a causal probabilistic model,
a Bayesian Network (BN)—whose expressive power allows
the marginalization over any set of variables given any other
set of variables. It considers that actions are applied to a
single object using the robot hands, whereas we model inter–
object affordances, including new variables that represent
the intermediate object as an individual entity, as depicted
in Fig. 2. The BN of our approach explicitly models both
primary (acted) and intermediate (held) objects, thus we can
infer i) affordances of primary objects, ii) affordances of
intermediate objects, and iii) affordances of the interaction
between intermediate and primary objects. For example, our
model can be used to predict effects given both objects and
the performed action, or choose the best intermediate object
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Figure 2. General architecture of affordances, modeled as relations between
actions, effects and objects (held and acted).

(a) Color input. (b) Binary segmenta-
tion.

(c) Color image with
overlay contours.

Figure 3. Visual processing pipeline. For each segmented blob, we compute
the visual features of Table I.

(tool) to achieve a goal (effect to be produced on a primary
object).

A. Visual Descriptors

We use the shape characteristics of objects in terms
of descriptors of their 2D silhouette, segmented from the
background; the objects that we employ are almost flat and
they are put on a table in favorable perspectives. In future
work we aim at introducing 3D features; still, we believe
that a great deal of information about the shape of an
object can be extracted from its visible silhouette. As we
are not addressing the general segmentation problem, we
consider a simple playground environment, consisting of a
table with colored objects on top. Thus, we apply simple
color-based segmentation to retrieve connected components
of pixels in 2D, that we call “blobs”. We assume that each
blob corresponds to an object, which in turn can potentially
be used as the intermediate object or the primary object.
Furthermore, we compute not only the descriptors of whole
blobs, but also the ones of blob halves: we divide each blob
in two parts along its main axis; this division is helpful to
capture affordances of intermediate objects, for which only
the tip part (upper half, or not grasped part) is relevant in
interactions. For held objects, the variables encode tip part
visual descriptors; for acted objects, they encode whole blob
descriptors.

Each segmented blob is described by the visual features re-
ported in Table I. An example is shown in Fig. 3. These visual
descriptors include information about blob contour perimeter,
blob area, external contour perimeter (polygonal approxima-
tion), convex hull, approximating ellipse, minimum-enclosing
circle and minimum-enclosing rectangle [24]. These shape
primitives are interesting from the point of view of general-
ization abilities. Because they are very general and do not
demand for a categorization of the object, they can be used
to assess similarity between objects even if they belong to
different classes. For instance a thermometer and a pencil are

Table I
SHAPE DESCRIPTORS.

Descriptor Definition

Area Number of pixels
Convexity Ratio between convex hull perimeter and object

perimeter
Eccentricity Ratio between minor and major axes of best-fit ellipse
Compactness Ratio between object area and squared external con-

tour perimeter
Circleness Ratio between object area and area of minimum-

enclosing circle
Squareness Ratio between object area and area of minimum-

enclosing rectangle

categorically different but, in terms of physical properties,
they are very similar and afford some common actions (e.g.,
stir the coffee). If fact, it is one of the main characteristics
of human intelligence the ability to use the properties of
available objects to produce effects that were not obvious, on
a first analysis. Contrary to object recognition approaches,
which say little if any about the physical properties of an
object, our proposed descriptors are very much related to the
shape of surfaces and change smoothly across similar objects.

For visual features of held and acted objects, we con-
sider three empirically-defined discrete levels: Low (L),
Medium (M) and High (H).

B. Actions and Effects

For the actions used in this work, we consider four direc-
tional pushes (left, right, pull closer, push away), performed
with the robot end effector extension (tip of the hand held
object). The IDs of these four actions are the observed values
of the action node in the affordance networks.

As for effects, we further divide them in EffectX
and EffectY, and we consider the 2D displacement (along
lateral and longitudinal direction, respectively) of the acted
object on the table plane, from the time when the robot
performs the action, until a fixed duration of a few frames
afterwards.

For the effect nodes, we consider five discrete levels: Very
Positive (VP), Low Positive (LP), No Movement (NM), Low
Negative (LN) and Very Negative (VN). In lateral movement,
positive means to the right and negative to the left. For
longitudinal movements, positive means closer to the robot
(down in image space), negative means farther from the robot
(up in image space).

C. Fully Connected Network

In this article, we will evaluate different Bayesian Net-
works1 for their space complexity, speed of training, predic-
tion ability and generalization capability – or lack of.

The baseline structure for our comparisons is a manually
defined fully connected network, shown in Fig. 4a. This is

1In all the Bayesian Network structures that we discuss, we use discrete
variables and Maximum A Posteriori probability estimates to learn the
conditional probability distribution (CPD) table parameters.
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(a) Fully connected network, manually defined.
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(c) K2 Structure Learning network.
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(d) BDe Structure Learning network.

Figure 4. Proposed Bayesian Network structures to encode inter–object affordances. Figs. 4b, 4c, 4d were obtained from experimental data (Sec. V-B).
A. Object: Acted Object; H. O.: Held Object.

the most general structure, in which all the object and action
nodes of the conceptual diagram of Fig. 2 are connected to
the effect nodes.

The fully connected network suffers from a number of
limitations, further explained in Sec. V-A: low performance,
overfitting, large number of parameters. Basically, this net-
work structure suffers from the curse of dimensionality: each
effect node has 13 parents, resulting in big CPD tables, which
makes the network hard to train and unfit to generalize the
trained observations to unseen situations.

D. Reduced Network

To reduce the dimensionality of the feature space, we
apply Principal Component Analysis to the features seen on
our training data, as shown in the upper part of Fig. 4b.
Using 80% of our experimental data for training and 20%
for testing (see Sec. V-B), PCA provides 12 principal com-
ponents; however, we only need 2 principal components to
explain almost 100% of the data variance. Therefore, we cre-
ated two nodes, each corresponding to a principal component,
and these, along with the action node, are now the parents of
the effect nodes of a reduced Bayesian Network, displayed
in the lower part of Fig. 4b. The values of these nodes are the
coefficients of each eigenvector given the observable features.

These coefficients are then discretized, based on the training
data, into two values. We also tried to discretize each node
into more values, but the performance of the network when
predicting effects of unseen data was significantly worse.

E. Structure Learning

In Bayesian Network structure learning, the search space
contains all possible structures of directed acyclic graphs
(DAGs), given the number of variables in the domain. [9]
Because the number of DAGs is super-exponential in the
number of nodes, it is unfeasible to enumerate all possible
network structures and assign them a score, even for a low
number of nodes. This justifies the usage of heuristics to find
a (local) maximum in the structure space. We employ two
heuristic-based approaches: K2 [25], [26] and BDe (Bayesian
Dirichlet likelihood-equivalence, [27]). In both cases, we
use 80% of our experimental data for training and 20% for
testing (see Sec. V-B).

The K2 algorithm searches for the structure that maximizes
the joint probability p(structure, data), for this it assumes a
known ordering on the domain variables and that all possible
structures are equally likely. It starts from the lowest-order
node and makes its way sequentially to the highest. At each
node it first assumes that it has no parents, then it uses a



Table II
COMPLEXITY OF BAYESIAN NETWORKS, COMPUTED AS THE SUM OF

THE ELEMENTS IN THE CPDS OF ALL NODES.

Baseline PCA Structure
Learning
BDe

Structure
Learning
K2

21257680 168 1594 535

greedy-search method over the K2 score [25] of the lower-
order nodes to incrementally add them as its parents. Fig. 4c
shows the learned K2 structure.

With BDe, the structure of the networks is maximized by
using greedy search and simulated annealing. All the nodes
except for EffectX and EffectY were entered as interventional
variables, and the resulting network is shown in Fig. 4d.

The measure of complexity in Table II is computed as
the number of elements in the largest CPD of a network.
Complexity depends only on the discretization and on the
network structure, independently of data and learning.

IV. EXPERIMENTAL SETUP

In this section we present the iCub robot and the ex-
perimental setup implemented for inter–object affordances
exploration.

A. Robotic Platform

The iCub [8] is an open-source humanoid robot for re-
search in embodied cognition, developed in the context of
the EU project RobotCub (2004-2010) and adopted by more
than 20 laboratories worldwide. It has 53 motors that move
the eyes, neck, arms and hands, waist, and legs. It is equipped
with stereo vision, proprioception, vestibular system, force
and tactile sensing. In this work, we adopt both the iCub Sim-
ulator [10] and the real robot. YARP [28] and iCub software
libraries are employed to provide the simulated robot with
motor control capabilities to perform several actions using
various tools [19]. We implemented the software modules
that compute the visual descriptions of intermediate and acted
objects (Section III-A), and those that coordinate autonomous
exploration (Section IV-B). Our software is publicly available
from the iCub repository (http://www.icub.org), and it runs
both on the real iCub and on the simulator.

B. Autonomous Exploration of Affordances

To explore the multitude of possible values for the nodes
in the Bayesian Network, data was gathered from 2353 ex-
periments in the iCub simulator and 21 in the iCub robot.

The experiments in the simulator consisted in, for each
experimental trial, performing 1 of the 4 directional push
actions upon the primary object while holding an intermedi-
ate object, where both objects were chosen from a set of 8
possibilities (shown in Figs. 5 and 6). Of these experiments,
some were used to learn the proposed Bayesian Network
models and some for testing, as further detailed in Sec. V-B.

In the real robot the experiments consisted on performing
the “tap to the left” action while holding a straight stick

Figure 5. Exploration sequence on the iCub simulator.

10 times on a ball and 11 times on a box. These experiments
were used to evaluate the generalization abilities of the model
going from simulation to the real setup.

V. RESULTS

In this section, we show results of the affordance networks,
both in simulation and on the real robot.

A. Evaluation Scores

For our tests, the score criteria that we employ are the
following: gambling score, accuracy, distance.

Gambling score: in this scoring system the robot makes
a prediction for each effect given the observation of all the
other variables (nodes). To make this prediction the posterior
probability, p(EffectX|O = v), is computed, where O are the
object and action nodes and v are their values. The predicted
effect is then the value of the Effect that maximizes the
posterior probability.

If the predicted effect is equal to the real effect then we
add 4 points to the score, otherwise we subtract 1 point.

If we had a random machine predicting random effects and
comparing against observations, its estimated score would be
zero. If we had a perfect predictor, we would obtain the score
of four times the number of test data observations.

In Table III, the score is presented as a percentage of the
score obtained by the network, divided by the perfect score.
With this score, we can easily see how much better the robot
performance is, versus a random machine and versus a perfect
machine.

Accuracy: defined as the number of correct predictions
over the number of total predictions.

Distance: defined as the absolute difference between pre-
diction and real value. In Table III it is shown as a percentage,
relative to the maximum possible distance.

B. Performance Evaluation and Discussion

We evaluate the Bayesian Networks regarding their capa-
bility of predicting effects, given two objects’ visual descrip-
tors and the action performed with them, with previously
unseen test data. To do this we perform two tests, outlining
advantages and disadvantages of each of the networks.

The first test consists of randomly splitting the data in a
training set with 80% of observations, the remaining 20%
for testing. The exploration data is relative to the 1663 trials
corresponding to the seven objects of Fig. 6a–6g. Results are
presented in Table III. The original baseline network is the

http://www.icub.org


(a) Ball. (b) Cube. (c) Cylinder. (d) Stick. (e) L-stick. (f) Bone. (g) Umbrella. (h) Fork.

Figure 6. Objects used in robot simulation, to train the Bayesian Networks. Object 6h is only used in leave-one-out test, see Sec. V-B.

Table III
SCORES WHEN RANDOMLY SELECTING 80% OF OBSERVATIONS AS
TRAINING DATA, REMAINING OBSERVATIONS AS TEST DATA. R.P.

STANDS FOR RANDOM PREDICTIONS.

Baseline
(13.55%
r.p.)

PCA
(0% r.p.)

Structure
Learning
BDe
(0% r.p.)

Structure
Learning
K2
(0% r.p.)

Gambling Sc. 69.88% 75.72% 79.10% 79.67%
Accuracy 75.90% 80.57% 83.28% 83.73%
Distance 9.11% 6.10% 5.12% 5.12%

Table IV
LEAVE-ONE-OUT SCORES, TESTING NETWORKS AGAINST AN OBJECT

UNSEEN DURING TRAINING. R.P. STANDS FOR RANDOM PREDICTIONS.

Baseline
(57.25%
r.p.)

PCA
(0% r.p.)

Structure
Learning
BDe
(52.61% r.p.)

Structure
Learning
K2
(53.04% r.p.)

Gambling Sc. 30.25% 67.39% 35.53% 34.91%
Accuracy 44.20% 73.91% 48.42% 47.93%
Distance 25.60% 7.28% 23.72% 23.97%

one with the lowest performance: due to its huge complex-
ity, this network does not generalize well what it learned.
13.55% of the time, this network made a random prediction
because an event where all the instantiated variables were
seen with the exact same values observed in the test data
was never seen during training. The PCA network yields a
good score, because it has the smallest complexity of all the
networks considered. However, the two networks obtained
with Structure Learning, BDe and K2, provided very similar
results and were the networks with the best performance for
the test data.

The second test is a leave-one-out cross-validation, using
the same networks as the previous test, but the unseen object
of Fig. 6h as test data (690 samples). Results are shown in
Table IV. The PCA network has the best performance: being
the least complex network makes it the most capable network
for generalization to unseen objects. The performance of the
other networks got significantly worse, showing that these
networks are too dependent on the training data (overfitting),
so their use on the real robot with a changing environment
should be accompanied with an online Structure Learning
and parameter learning algorithm.

C. Generalization from Simulation to Real Robot

In this experiment, the robot performed the “tap to the
left” action while holding a straight stick. It repeated this

action 10 times acting on a ball, 11 times acting on a
box. From these iterations, we computed the statistics to
be used as ground truth, and we compared them to the
prediction of the resulting effect, given acted object and
intermediate object, by the K2 and PCA network.2 Results for
the query p(Effect|parents(Effect)), where Effect is EffectX
or EffectY, and the ground truths, are shown together in
Table V.

We evaluate how well the predictions match the ground
truth by computing the match distance [29] between their
histogram distributions. Being a cross-bin dissimilarity mea-
sure, the match distance is suited to cases where the bin order
matters. Our bin order for the effects (VN,LN,NM,LP,VP)
places more similar displacements in neighbor bins. The
maximum value of the distance, in our case, is dMAX = 4, the
distance between histograms (1, 0, 0, 0, 0) and (0, 0, 0, 0, 1).
It is a special case of the Earth Mover’s Distance, so it can be
interpreted as the amount of mass transported between bins
times their distance, to transform one histogram to the other.

Both the PCA network and the K2 structure provide
acceptable results (average match distances below 10%
of dMAX), with K2 being slightly more accurate (about 7%
lower match distances), although the K2 structure of Fig. 4c
has the peculiarity of the EffectX node being conditionally
independent from acted object features. This explains why the
K2 EffectX rows of Table V have equal values, regardless of
the acted object.

VI. CONCLUSIONS

We presented a novel computational model of multi-object
affordances using Bayesian Networks. Our model considers
actions performed using an intermediate object over a pri-
mary one while relating the visual features of both of them to
the effects, unlike previous works on affordances, which deal
with either primary objects only (no intermediate object),
or with intermediate objects yet ignoring the characteristics
of the primary one. Different structures of the Bayesian
Network, obtained either through structure learning (K2 and
BDe algorithms) or dimensionality reduction (PCA), are
investigated and compared in terms of complexity, represen-
tation capability and generalization, with respect to a baseline
fully-connected structure. The results show that both structure
learning and dimensionality reduction techniques allow to

2In the effect prediction experiment, the baseline network and the BDe
network provided random answers (equal probability for all values) because
their structure did not represent well the exact combination of observations
in the experiment.



Table V
COMPARISON BETWEEN GROUND TRUTH (GT) AND EFFECT PREDICTION BY K2 AND PCA NETWORKS. PCA PROVIDES BETTER MATCHES FOR THE

BALL EXPERIMENTS, K2 FOR THE BOX ONES. OVERALL, PCA HAS A MATCH DISTANCE 7.3% HIGHER THAN K2.

VN LN NM LP VP match distance

GT K2 PCA GT K2 PCA GT K2 PCA GT K2 PCA GT K2 PCA K2 PCA

ball EffectX 0 0 0 0.3 0.0233 0.0137 0.5 0.8372 0.7945 0.1 0.1395 0.1644 0.1 0 0.0274 0.4372 0.3671
ball EffectY 0 0.01 0 0.1 0 0.0137 0.5 0.2 0.3699 0 0.23 0.3014 0.4 0.56 0.3151 0.65 0.3872
box EffectX 0 0 0 0.0909 0.0233 0.0337 0.9091 0.8372 0.7416 0 0.1395 0.2247 0 0 0 0.2071 0.2819
box EffectY 0 0 0.0112 0 0.0204 0.0449 0.4545 0.5306 0.7079 0.5455 0.4490 0.1348 0 0 0.1011 0.1169 0.4781

reduce the complexity of the model while improving the
estimation performance; more specifically, the PCA model is
characterized by the lowest complexity and the best perfor-
mance in generalization to completely new objects (Table II
and Table IV), while the K2 model performs slightly better
in representing the experienced data (Table III). Moreover,
the model learned in simulation can be used to reasonably
predict the effects of the actions on the real robot; in this
case, the structure obtained with the K2 algorithm shows the
best average performance (Table V).
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