Terrain Avoidance Model Predictive Control for Autonomous Rotorcraft

B. Guerreiro C. Silvestre R. Cunha

Instituto Superior Técnico
Institute for Systems and Robotics
Av. Rovisco Pais, 1
1049-001 Lisboa, Portugal
(email: {bguerreiro,cjs,rita}@isr.ist.utl.pt)

October 7th, 2008
Outline

1. Introduction
 - Autonomous Rotorcraft
 - Model Predictive Control Approach

2. Model
 - State Space Equation
 - Forces and Moments

3. Controller
 - MPC Control Problem
 - Unconstrained Optimization Problem
 - Algorithm

4. Results
 - Simulation Results
 - Summary
Outline

1 Introduction
 - Autonomous Rotorcraft
 - Model Predictive Control Approach

2 Model
 - State Space Equation
 - Forces and Moments

3 Controller
 - MPC Control Problem
 - Unconstrained Optimization Problem
 - Algorithm

4 Results
 - Simulation Results
 - Summary
Introduction

Autonomous Rotorcraft

Applications:
- Low altitude aerial surveillance;
- Automatic infrastructure inspection;
- 3D mapping of unknown environments.

The platform:
- High precision 3D maneuvers;
- Hover and VTOL capabilities;
- Carry multiple sensors.

Challenging Control problem:
- Highly nonlinear and coupled model
- Wide parameter variations over the flight envelope
Introduction
Model Predictive Control Approach

- Helicopter nonlinear model;
- Input and state saturation constraints;
- Terrain avoidance constraint:
 - Virtual repulsive field around vehicle.
- Reformulated into unconstrained problem;
- Solved online at each sampling instant;
- Optimization algorithm:
 - Quasi-Newton search direction;
 - Line search using Wolfe rule.

Helicopter Nonlinear Dynamics
Terrain Avoidance
Input and State Saturation
MPC Controller
Outline

1. Introduction
 - Autonomous Rotorcraft
 - Model Predictive Control Approach

2. Model
 - State Space Equation
 - Forces and Moments

3. Controller
 - MPC Control Problem
 - Unconstrained Optimization Problem
 - Algorithm

4. Results
 - Simulation Results
 - Summary
Helicopter Model

Helicopter model:
- 6 DoF Rigid body dynamics;
- Parameterized for the Vario X-treme R/C helicopter

Actuation \(\mathbf{u} = [\theta_0, \theta_{1c}, \theta_{1s}, \theta_{0t}]^T \):
- \(\theta_0 \) is the main rotor collective input
- \(\theta_{1c}, \theta_{1s} \) are the main rotor cyclic inputs
- \(\theta_{0t} \) is the tail rotor collective input

State variables:
- \(\mathbf{v} = [u, v, w]^T \) – Body-fixed linear velocity
- \(\mathbf{\omega} = [p, q, r]^T \) – Body-fixed angular velocity
- \(\mathbf{p} = [x, y, z]^T \) – Position
- \(\lambda = [\phi, \theta, \psi]^T \) – ZYX Euler angles

State Vector:

\[
\mathbf{x} = \begin{bmatrix}
\mathbf{v} \\
\mathbf{\omega} \\
\mathbf{p} \\
\lambda
\end{bmatrix}
\]
Helicopter Model

State Space Equation

State Equation:

\[
\dot{x} = f_c(x, u) = \begin{bmatrix}
-\omega \times v + \frac{1}{m} [f_h(v, \omega, u) + f_g(\phi, \theta)] \\
-I^{-1}(\omega \times I \omega) + n_h(v, \omega, u) \\
R(\lambda) v \\
Q(\phi, \theta) \omega
\end{bmatrix}
\]

where \(x \in \mathcal{X} \) and \(u \in \mathcal{U} \).
Helicopter Model

Forces and Moments

- Resultant force and moment vectors:

\[
\mathbf{f}_h = \mathbf{f}_{mr} + \mathbf{f}_{tr} + \mathbf{f}_{fus} + \mathbf{f}_{tp} + \mathbf{f}_{fn}
\]

\[
\mathbf{n}_h = \mathbf{n}_{mr} + \mathbf{n}_{tr} + \mathbf{n}_{fus} + \mathbf{n}_{tp} + \mathbf{n}_{fn}
\]

- Main rotor:
 - 1st order pitching dynamics;
 - Steady state flapping dynamics;
 - Lag dynamic neglected;

- Tail rotor pitch, flap and lag dynamics neglected;

- Fuselage modeled as a function of flow velocity, incidence angle and sideslip angle;

- Horizontal tailplane and vertical fin modeled as regular wings.
Outline

1. Introduction
 - Autonomous Rotorcraft
 - Model Predictive Control Approach

2. Model
 - State Space Equation
 - Forces and Moments

3. Controller
 - MPC Control Problem
 - Unconstrained Optimization Problem
 - Algorithm

4. Results
 - Simulation Results
 - Summary
MPC Control Problem

- Discrete Model:
 \[x_{k+1} \approx f(x_k, u_k) = x_k + T_s f_c(x_k, u_k) \]

 Prediction Horizon N;

- State Sequence: \(X_k = \{x_k, \ldots , x_{k+N}\} \);

- Input Sequence: \(U_k = \{u_k, \ldots , u_{k+N-1}\} \);

- Reference State Sequence: \(\bar{X}_k = \{\bar{x}_k, \ldots , \bar{x}_{k+N}\} \);

- Reference Input Sequence: \(\bar{U}_k = \{\bar{u}_k, \ldots , \bar{u}_{k+N}\} \);

Where \(X_k, \bar{X}_k \in \mathcal{X}_N \) and \(U_k, \bar{U}_k \in \mathcal{U}_N \) with

\[\mathcal{X}_N = \{X_k : x_i \in \mathcal{X}, \forall i = k, \ldots , k+N\} \]

\[\mathcal{U}_N = \{U_k : u_i \in \mathcal{U}, \forall i = k, \ldots , k+N-1\} \]
MPC Control Problem

Find, at each iteration k, the optimal control sequence U_k^* with horizon N, such that the resulting state sequence X_k^* follows the state reference \bar{X}_k without violating the state and input constraints and avoiding collisions, i.e.,

$$U_k^* = \arg \min_{U_k} J_k \quad \text{s.t.} \quad X_k \in \mathbf{X}_N, \ U_k \in \mathbf{U}_N$$

$$F_M(X_k, U_k) = 0, \ F_T(X_k) = 0$$

$$J_k = F_{k+N} + \sum_{i=k}^{k+N-1} L_i, \quad F_i = \frac{1}{2} \tilde{x}_i' P \tilde{x}_i$$

$$L_i = \frac{1}{2} (\tilde{x}_i' Q \tilde{x}_i + \tilde{u}_i' R \tilde{u}_i) \quad \text{with} \quad \tilde{x}_i = x_i - \bar{x}_i \quad \text{and} \quad \tilde{u}_i = u_i - \bar{u}_i$$
Unconstrained Optimization Problem

Saturation Constraint

- Constraint Sets:
 \[\mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^{n_x} : |x^{(j)}| \leq x^{(j)}_{\text{max}} \ \forall \ j=1,...,n_x \} \]
 \[\mathcal{U} = \{ \mathbf{u} \in \mathbb{R}^{n_u} : |u^{(l)}| \leq u^{(l)}_{\text{max}} \ \forall \ l=1,...,n_u \} \]

- Penalty function:
 \[f_S (\mathbf{x}, \mathbf{u}) = \frac{1}{2} \sum_{j=1}^{n_x} h(|x^{(j)}| - x^{(j)}_{\text{max}})^2 w_x^{(j)} + \frac{1}{2} \sum_{l=1}^{n_u} h(|u^{(l)}| - u^{(l)}_{\text{max}})^2 w_u^{(l)} \]

where \(w_x^{(j)}, w_u^{(l)} \in \mathbb{R}^+ \) and \(h(a) = \begin{cases} a, & \text{if } a > 0 \\ 0, & \text{otherwise} \end{cases} \).
Unconstrained Optimization Problem

Terrain Constraint

- Weight minimum distance between helicopter position \mathbf{p} and closest terrain point \mathbf{p}_m: $\mathbf{p}_e = \mathbf{p} - \mathbf{p}_m$

- Distance between the terrain and the sphere of radius r_S:

 $$g(\mathbf{x}) = \mathbf{p}_e' \mathbf{p}_e - r_S^2$$

- Terrain avoidance constraint function:

 $$f_T(\mathbf{x}) = e^{-g(\mathbf{x})}$$
Saturation and Terrain constraints incorporated in cost functional using penalty methods;

The equivalent optimization problem is given by

\[U_k^* = \arg \min_{U_k} \bar{J}_k, \quad s.t. \quad F_M(X_k, U_k) = 0 \]

where

\[\bar{J}_k = \bar{F}_{k+N} + \sum_{i=k}^{k+N-1} \bar{L}_i \]

\[\bar{F}_i = F_i + f_S(x_i, 0) + f_T(x_i), \quad \bar{L}_i = L_i + f_S(x_i, u_i) + f_T(x_i) \]
Model Constraint solved using Lagrange multipliers λ_i:

$$H_i = \bar{L}_i + \lambda'_{i+1} f_d(x_i, u_i)$$

$$\bar{J}_k = \bar{F}_{k+N} - \lambda'_{k+N} x_{k+N} + \sum_{i=k+1}^{k+N-1} \left[H_i - \lambda'_i x_i \right] + H_k$$

Choose:

$$\lambda_{k+N} = \frac{\partial \bar{F}_{k+N}}{\partial x_{k+N}}, \quad \lambda_i = \frac{\partial H_i}{\partial x_i}, \quad \forall i=k+1, \ldots, k+N-1$$

Then, 1^{st} order condition of optimality reduced to:

$$\frac{\partial \bar{J}_k}{\partial u_i} = \frac{\partial H_i}{\partial u_i} = 0, \quad \forall i=k, \ldots, k+N-1$$
Algorithm Minimization

Minimization Algorithm

1. Initialize $X_k^{(0)}, \bar{X}_k, U_k^{(0)}$ and \bar{U}_k and set $j = 0$;
2. Compute $\{\lambda_i\}$ and $\left\{ \frac{\partial H_i}{\partial u_i} \right\}$;
3. Compute the search direction $\Delta_k^{(j)}$;
4. Compute the step size $s^{(j)}$ using Wolfe’s rule;
5. Compute $U_k^{(j+1)} = U_k^{(j)} + s^{(j)} \Delta_k^{(j)}$ and $X_k^{(j+1)}$;
6. Test stop condition: if false set $j = j + 1$ and go to step (2); if true apply $u_k^{(j+1)}$ to system.

- Quasi-Newton search direction: $\Delta_k^{(j)} = -D(j) \frac{\partial H_k^{(j)}}{\partial U_k^{(j)}}$.
Algorithm
Line Search – Wolfe conditions

- Step size optimization subproblem:
 \[s^* = \arg \min_{s \geq 0} \phi(s) \]

- Cost Functional:
 \[\phi(s) = \bar{J}_k \left(X_k^{(j+1)}, U_k^{(j+1)} \right), \quad \phi'(s) = \frac{d \phi(s)}{ds} \]

- Wolfe sets (\(\sigma \) and \(\lambda \) are tuning constants):
 \[\mathcal{A} = \{ s > 0 : \phi(s) \leq \phi(0) + \sigma \phi'(0) s \land \phi'(s) \geq \lambda \phi'(0) \} \]
 \[\mathcal{L} = \{ s > 0 : \phi(s) > \phi(0) + \sigma \phi'(0) s \} \]
 \[\mathcal{R} = \{ s > 0 : \phi(s) \leq \phi(0) + \sigma \phi'(0) s \land \phi'(s) < \lambda \phi'(0) \} \]

- Algorithm finds an estimate of \(s^* \) by selecting \(s \in \mathcal{A} \).
Outline

1. Introduction
 - Autonomous Rotorcraft
 - Model Predictive Control Approach

2. Model
 - State Space Equation
 - Forces and Moments

3. Controller
 - MPC Control Problem
 - Unconstrained Optimization Problem
 - Algorithm

4. Results
 - Simulation Results
 - Summary
Simulation Results

Implementation

- Horizon $N = 70$;
- Sample time $T_s = 0.02\, s$;
- Simulation trajectory:
 - Hover at initial position;
 - Straight line until final position;
 - Hover at final position;
- Terrain simulates a river bed;
 - Reference trajectory collides twice with terrain;
 - Simplified nonlinear model used in MPC;
 - Full nonlinear model used as the plant.
Simulation Results

Position

Actuation

Guerreiro, Silvestre and Cunha
Terrain Avoidance MPC for Autonomous Rotorcraft
Simulation Results

Helicopter Trajectory

Simulating: t = 000.00/110.00 seg.
Summary

- The results indicate that the presented methodology can achieve effective terrain avoidance while steering the vehicle along a reference trajectory
 - Full nonlinear model of the helicopter;
 - Repulsive field constraint for terrain avoidance;
 - Input and State saturation constraints;
 - Quasi-Newton Algorithm for minimization;
 - Line search algorithm reduces computational effort.

- Further research:
 - Nonlinear model simplification;
 - Efficient computation of the closest terrain point;
 - Tuning sampling frequency and prediction horizon of the MPC controller.
The end

- Thank you for your time.
Short Bibliography

R. Cunha and C. Silvestre.
Dynamic modeling and stability analysis of model-scale helicopters.
Austin, Texas, August 2003.

Constrained model predictive control: Stability and optimality.
Survey Paper.

Jorge Nocedal and Stephen Wright.
Numerical Optimization.

G. Sutton and R. Bitmead.
Computational implementation of nonlinear model predictive control to nonlinear submarine.
In F. Allgöwer and A. Zheng, editors, *Nonlinear Model Predictive Control*,
Terrain Avoidance Model Predictive Control for Autonomous Rotorcraft

B. Guerreiro C. Silvestre R. Cunha

Instituto Superior Técnico
Institute for Systems and Robotics
Av. Rovisco Pais, 1
1049-001 Lisboa, Portugal
(email: {bguerreiro,cjs,rita}@isr.ist.utl.pt)

October 7th, 2008