
Augmenting Dual Decomposition for MAP Inference

André F. T. Martins∗† Noah A. Smith∗ Eric P. Xing∗
∗School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Pedro M. Q. Aguiar‡
‡Instituto de Sistemas e Robótica,

Instituto Superior Técnico, Lisboa, Portugal

Mário A. T. Figueiredo†
†Instituto de Telecomunicações,

Instituto Superior Técnico, Lisboa, Portugal

Abstract

In this paper, we propose combining augmented Lagrangian optimization with
the dual decomposition method to obtain a fast algorithm for approximate MAP
(maximum a posteriori) inference on factor graphs. We also show how the pro-
posed algorithm can efficiently handle problems with (possibly global) structural
constraints. The experimental results reported testify for the state-of-the-art per-
formance of the proposed approach.

1 Introduction
Finding the most probable (usually called MAP) configuration of a probabilistic graphical model
(e.g., a factor graph – FG [27]) is in general an NP-hard problem, a fact which has stimulated
much work on approximate methods. The dual decomposition (DD) [3, 4] is one such approximate
method, which has been recently used in computer vision [17] and natural language parsing [18]. In
a nutshell, DD works by breaking the original hard problem into a set of smaller (slave) subproblems.
This set of subproblems, together with the constraints that they should agree on the variables they
share, yields a constrained optimization problem, the Lagrange dual of which is then usually attacked
with a subgradient method. While a subgradient algorithm handles this dual problem efficiently for
lightweight decompositions (i.e., with few slaves), in the presence of a large number of slaves its
performance degrades, making accelerated methods worthy of study [14]. Here, we propose to ally
the strength of DD with the effectiveness of augmented Lagrangian (AL) methods, which have a
long and successful history in optimization [13, 21], and which have recently been shown to be
extremely competitive for some large scale problems [1, 7, 12]. Specifically, we use the alternating
direction method of multipliers (ADMM) [8, 11, 6] to handle the dual of the constrained problem
resulting from the DD, and show that the resulting method has state-of-the-art performance.

Being interested in problems with (possibly global) structural constraints (common in structured
prediction [2]), we show that the proposed method can handle this class of problems efficiently.
This efficiency is rooted in the fact that the slave problems associated with the hard factors enforcing
some of these structural constraints can be solved with the help of sort operations. Each ADMM
iteration thus has a cost comparable to that of an iteration of the message-passing algorithm or of
the subgradient method applied to the DD. Moreover, the residual term in the AL can be used as
a primal feasibility test and to obtain optimality certificates for the approximate MAP problem, an
important advantage over other methods. Finally, our method is also heavily parallelizable.

2 Problem Formulation
LetX , (X1, . . . , Xn) ∈ X be a vector of discrete random variables, where each Xi ∈ Xi, with Xi
a finite set. We assume thatX has a Gibbs distribution associated with a FG G, composed of variable
nodes {1, . . . , n} and a set of factor nodes A: Pθ,φ(x) ∝ exp

(∑n
i=1 θi(xi) +

∑
a∈A φa(xa)

)
,

1

where each factor a ∈ A is linked to a subset of variables N(a) ⊆ {1, . . . , n}, xa stands for
the subvector indexed by the elements of N(a), and θi and φa are, respectively, unary and higher-
order log-potentials. To accommodate hard constraints, we allow these functions to take values in
R ∪ {−∞}. For simplicity, we write θi , (θi(xi))xi∈Xi and φa , (φa(xa))xa∈Xa .

Given a FG G, a common task is to find the most probable assignment x̂ , arg maxx∈X Pθ,φ(x)
(often termed MAP—maximum a posteriori—since Pθ,φ is usually the posterior distribution in
some Bayesian inference problem). This (in general NP-hard) combinatorial problem can be trans-
formed into a linear program (LP) by introducing marginal variablesµ , (µi)

n
i=1 and ν , (νa)a∈A

and letting M(G) be the marginal polytope of G – i.e. the set of realizable marginals [27]. This yields

OPT , max
(µ,ν)∈M(G)

∑
i

θ>i µi +
∑
a

φ>a νa, (1)

which always admits an integer solution. Unfortunately, M(G) often lacks a concise representation
(e.g., if G has loops), rendering (1) intractable. A common workaround is to replace M(G) by the
outer bound L(G) ⊇M(G)—the so-called local polytope, defined as

L(G) =
{

(µ,ν) |
(
1>µi = 1,∀i

)
∧ (Hiaνa = µi,∀a, i ∈ N(a)) ∧ (νa ≥ 0,∀a)

}
, (2)

where Hia(xi,xa) = 1 if xa agrees with xi, 0 otherwise. This yields the following LP relaxation:

OPT′ , max
(µ,ν)∈L(G)

∑
i

θ>i µi +
∑
a

φ>a νa, (3)

which will be our main focus throughout. Obviously, OPT′ ≥ OPT, since L(G) ⊇M(G).

3 Dual Decomposition
Several message passing algorithms [9, 15] are derived via some reformulation of (3) followed by
dualization. The DD method [17] reformulates (3) by adding new variables νai (for each factor a
and i ∈ N(a)) that are local “replicas” of the marginals µi, and enforcing agreement among those
variables. Letting di = |{a|i ∈ N(a)}| be the degree of node i, (3) is rewritten as

max
ν,µ

∑
a

 ∑
i∈N(a)

d−1
i θ

>
i ν

a
i + φ>a νa

 (4)

s.t. (νaN(a),νa) ∈M(Ga), ∀a; νai = µi, ∀a, i ∈ N(a),

where Ga is the subgraph of G comprised only of factor a and the variables in N(a), M(Ga) is the
corresponding marginal polytope, and we denote νaN(a) , (νai)i∈N(a). Note that problem (4) would
be completely separable (over the factors) if it were not the “coupling” constraints νai = µi. With
Lagrange multipliers λai for these constraints, the dual problem is minλ∈Λ L(λ), where:

L(λ) ,
∑
a

max
(νa

N(a)
,νa)∈M(Ga)

∑
i∈N(a)

(
d−1
i θi + λai

)>
νai + φ>a νa, (5)

Λ ,

{
λ
∣∣∣ ∑
a|i∈N(a)

λai = 0, ∀i
}
. (6)

A closer look at (5) reveals a set of MAP subproblems of the same kind of (1), but now local to
each factor a: the so-called slave problems. The master problem is the minimization of L w.r.t.
λ, which can be carried out elegantly via the projected subgradient algorithm: a subgradient is
simply ∇λa

i
L(λ) = ν̂ai , where (ν̂aN(a), ν̂a) is solution of the slave problem associated with a

(these slaves can be handled in parallel); a projection onto Λ is simply a centering operation. The
resulting algorithm is described in Alg. 1 (where we denote by MAP(ωN(a),φa) the MAP solution
for factor a, given unary log-potentials ωN(a) , (ωai)i∈N(a) and factor log-potentials φa). For
adequate choices of the stepsize sequence (ηt)t∈T , this method is guaranteed to converge; however,
convergence can be slow if the number of slaves is large. In the next section we introduce a faster
method which, instead of computing the MAP at each factor a, computes projections onto M(Ga).

2

Algorithm 1 DD-Subgradient
1: input: factor graph G, parameters θ,φ, number of iterations T , sequence (ηt)

T
t=1

2: Initialize λ = 0
3: for t = 1 to T do
4: for each factor a ∈ A do
5: Set unary potentials ωai = d−1

i θi + λai , for i ∈ N(a)
6: Compute (ν̂aN(a), ν̂a) = MAP

(
ωaN(a),φa

)
7: end for
8: Compute average ν̄i = di

−1∑
a:i∈N(a) ν̂

a
i

9: Update λai ← λai − ηt (ν̂ai − ν̄i)
10: end for
11: output: λ

4 Augmented Lagrangian (AL) Method
Given an optimization problem with equality constraints, the AL function is the Lagrangian aug-
mented with a quadratic constraint violation penalty. For the constraint problem (4), the AL is

Aη(µ,ν,λ) ,∑
a

(∑
i∈N(a)

(
d−1
i θi + λai

)>
νai + φ>a νa

)
−
∑
a

∑
i∈N(a)

λai
>
µi −

η

2

∑
a

∑
i∈N(a)

‖νai − µi‖2,

where η controls the weight of the penalty. We want to maximize this function with respect to µ and
ν, subject to (νaN(a),νa) ∈ M(Ga),∀a. Unfortunately, the quadratic term breaks the separability,
making this maximization harder. In the ADMM approach, this difficulty is addressed by alternating
between maximizing w.r.t. µ and w.r.t. ν, followed by an adjustment of the Lagrange multipliers
[8, 11, 6] (as shown in Alg. 2). Crucially, the maximization w.r.t. µ has closed form, while that w.r.t.
ν can be carried out in parallel at each factor, as in Alg. 1; the only difference is that, instead of
MAP, the slaves are now quadratic problems of the form

min
(νa

N(a)
,νa)∈M(Ga)

ηt
2

∑
i∈a
‖νai − η−1

t ωai ‖2 − φ
>
a νa, (7)

where ηt > 0 is the penalty parameter at iteration t. In Alg. 2, we denote by QUADηt(ωN(a),φa)
the solution of (7); note that as ηt → 0, QUADηt(ωN(a),φa) approaches MAP(ωN(a),φa), thus
Alg. 2 approaches Alg. 1. However, we will see that for a proper choice of ηt, Alg. 2 converges
faster. In practice, it is common to use a fixed ηt = η and 1 < τ ≤ (

√
5 + 1)/2 ' 1.61 [10]. With

these choices, and assuming that QUADηt is computed exactly, convergence is guaranteed, since in
(4), both the objective function (which is linear) and the feasible set are convex [10]. Under certain
conditions, convergence can still be guaranteed with only approximate solutions of (7) [6].

Algorithm 2 DD-ADMM
1: input: factor graph G, parameters θ,φ, number of iterations T , sequence (ηt)

T
t=1, parameter τ

2: Initialize µ uniformly, λ = 0
3: for t = 1 to T do
4: for each factor a ∈ A do
5: Set unary potentials ωai = d−1

i θi + λai + ηtµi, for i ∈ N(a)
6: Update (νaN(a),νa)← QUADηt

(
ωaN(a),φa

)
7: end for
8: Update µi ← di

−1∑
a:i∈N(a)

(
νai − η

−1
t λai

)
9: Update λai ← λai − τηt (νai − µi)

10: end for
11: output: µ,ν,λ

The remaining challenge is to devise efficient algorithms for solving (7). We next show a closed form
solution for the the case of binary pairwise factors, and an exact and efficient (O(|N(a)| log |N(a)|),

3

since it is based on sorting) algorithm for several hard constraint factors that arise in practice (see,
e.g., [19]). Up to log terms, this cost is the same as that of computing the MAP for those factors.

Binary pairwise factors. If factor a is binary and pairwise (|N(a)| = 2), problem (7) can be
re-written as the minimization of 1

2 (z1 − c1)2 + 1
2 (z2 − c2)2 − c12z12, w.r.t. (z1, z2, z12) ∈ [0, 1]3,

under the constraints z12 ≤ z1, z12 ≤ z2, and z12 ≥ z1 + z2 − 1, where c1, c2 and c12 are functions
of ωai and φa. Considering c12 ≥ 0, without loss of generality (if c12 < 0, we recover this case by
redefining c′1 = c1 + c12, c′2 = 1− c2, c′12 = −c12, z′2 = 1− z2, z′12 = z1 − z12), the lower bound
constraints z12 ≥ z1 + z2 − 1 and z12 ≥ 0 are always innactive and can be ignored. By inspecting
the KKT conditions we obtain the following closed form solution: z∗12 = min{z∗1 , z∗2} and

(z∗1 , z
∗
2) =

{
([c1]U, [c2 + c12]U) if c1 > c2 + c12

([c1 + c12]U, [c2]U) if c2 > c1 + c12

([(c1 + c2 + c12)/2]U, [(c1 + c2 + c12)/2]U) otherwise,
(8)

where [x]U = min{max{x, 0}, 1} denotes the projection (clipping) onto the unit interval.

Hard constraint factors. Hard factors have indicator log-potential functions: φa(xa) = 0, if
xa ∈ Sa, and −∞ otherwise, where Sa is an acceptance set. This type of factors has several
applications, such as error-correcting decoders [23], named entity resolution [26], and dependency
parsing [19]. For binary variables, hard factors impose logical constraints; e.g.,

• the one-hot XOR factor, for which SXOR = {(x1, . . . , xn) ∈ {0, 1}n|
∑n
i=1 xi = 1},

• the OR factor, for which SOR = {(x1, . . . , xn) ∈ {0, 1}n|
∨n
i=1 xi = 1},

• the OR-WITH-OUTPUT factor, for which SOR-OUT = {(x1, . . . , xn) ∈ {0, 1}n|
∨n−1
i=1 xi = xn}.

Variants of these factors (e.g., with negated inputs/outputs) allow computing a wide range of other
logical functions; it can be shown that the marginal polytope of a hard factor with binary variables
and acceptance set Sa is defined by z ∈ conv Sa, where z , (µ1(1), . . . , µn(1)) and conv denotes
the convex hull. Letting c = (ωia(1) + 1− ωia(0))i∈N(a), problem (7) becomes that of minimizing
‖z − c‖2 subject to z ∈ conv Sa, which is a Euclidean projection onto a polyhedron:

• conv SXOR is the probability simplex; the projection can be computed efficiently using a sort [5].
• conv SOR is a hypercube with a vertex removed and conv SOR-OUT is a pyramid whose base is a

hypercube with a vertex removed; in both cases, the projections can be efficiently computed using
one or two sorts; due to lack of space, we omit details.

Larger slaves. Finally, note that it is simple to address general, larger subgraphs using algorithms
with fast convergence guarantees: e.g., a primal-dual vanilla scheme, like the one proposed in [22],
resulting in cyclic projection algorithms. These can be useful to tackle coarser decompositions, in
which each subgraph is a chain or a tree. Even if each projection is not computed exactly, conver-
gence of ADMM may still be guaranteed under certain conditions [6]; this deserves further study.

5 Experiments
We compare DD-ADMM (Alg. 2) with two other approximate MAP inference algorithms: DD-
subgradient ([17], Alg. 1); Star-MSD (max-sum diffusion with star updates, [20]), which performs
dual block coordinate descent message-passing. Fig. 1 shows a typical plot for an Ising model (bi-
nary pairwise MRF) on a random grid. We observe that DD-subgradient is the slowest, taking a long
time to find a “good” primal feasible solution, arguably due to the large number of slave subprob-
lems (we have only considered naive decompositions; coarser ones, i.e., fewer slave problems, are
the topic of future work). Star-MSD performs better but it is outperformed by DD-ADMM, which
manages to approach a near optimal primal-dual solution in a few tens of iterations.

A second set of experiments aims at assessing the ability of DD-ADMM for handling problems with
heavily constrained outputs. The task is non-projective dependency parsing of natural language
sentences, to which DD approaches have recently been applied [18]. Fig. 2 depicts an example of
a sentence (the input) and its dependency tree (the output to be predicted). Second-order models
are state-of-the-art for this task: they include scores for each possible arc and for certain pairs of

4

10 20 30 40 50 60 70 80 90 100

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

Number of iterations

O
bj

ec
tiv

e

Star−MSD dual
DD−Subgrad. dual
DD−ADMM dual
Star−MSD primal
DD−Subgrad. primal
DD−ADMM primal

Figure 1: Results for a randomly gener-
ated 30 × 30 Ising model. Shown are the
dual objectives and the best primal feasi-
ble solution at each iteration. For DD-
subgradient, we set ηt = η0/t and picked
the η0 yielding maximum dual improve-
ment in 10 iterations, with halving steps
(those iterations are not plotted). For DD-
ADMM, we set η = 5.0 and τ = 1.5. All
decompositions are edge-based.

Non-projective Dependency Parsing using Spanning Tree Algorithms

Ryan McDonald Fernando Pereira

Department of Computer and Information Science

University of Pennsylvania

{ryantm,pereira}@cis.upenn.edu

Kiril Ribarov Jan Hajič

Institute of Formal and Applied Linguistics

Charles University

{ribarov,hajic}@ufal.ms.mff.cuni.cz

Abstract

We formalize weighted dependency pars-

ing as searching for maximum spanning

trees (MSTs) in directed graphs. Using

this representation, the parsing algorithm

of Eisner (1996) is sufficient for search-

ing over all projective trees inO(n3) time.
More surprisingly, the representation is

extended naturally to non-projective pars-

ing using Chu-Liu-Edmonds (Chu and

Liu, 1965; Edmonds, 1967) MST al-

gorithm, yielding an O(n2) parsing al-
gorithm. We evaluate these methods

on the Prague Dependency Treebank us-

ing online large-margin learning tech-

niques (Crammer et al., 2003; McDonald

et al., 2005) and show that MST parsing

increases efficiency and accuracy for lan-

guages with non-projective dependencies.

1 Introduction

Dependency parsing has seen a surge of inter-

est lately for applications such as relation extrac-

tion (Culotta and Sorensen, 2004), machine trans-

lation (Ding and Palmer, 2005), synonym genera-

tion (Shinyama et al., 2002), and lexical resource

augmentation (Snow et al., 2004). The primary

reasons for using dependency structures instead of

more informative lexicalized phrase structures is

that they are more efficient to learn and parse while

still encoding much of the predicate-argument infor-

mation needed in applications.

root John hit the ball with the bat

Figure 1: An example dependency tree.

Dependency representations, which link words to

their arguments, have a long history (Hudson, 1984).

Figure 1 shows a dependency tree for the sentence

John hit the ball with the bat. We restrict ourselves

to dependency tree analyses, in which each word de-

pends on exactly one parent, either another word or a

dummy root symbol as shown in the figure. The tree

in Figure 1 is projective, meaning that if we put the

words in their linear order, preceded by the root, the

edges can be drawn above the words without cross-

ings, or, equivalently, a word and its descendants

form a contiguous substring of the sentence.

In English, projective trees are sufficient to ana-

lyze most sentence types. In fact, the largest source

of English dependency trees is automatically gener-

ated from the Penn Treebank (Marcus et al., 1993)

and is by convention exclusively projective. How-

ever, there are certain examples in which a non-

projective tree is preferable. Consider the sentence

John saw a dog yesterday which was a Yorkshire Ter-

rier. Here the relative clause which was a Yorkshire

Terrier and the object it modifies (the dog) are sep-

arated by an adverb. There is no way to draw the

dependency tree for this sentence in the plane with

no crossing edges, as illustrated in Figure 2. In lan-

guages with more flexible word order than English,

such as German, Dutch and Czech, non-projective

dependencies are more frequent. Rich inflection

systems reduce reliance on word order to express

TREE

1

ARC

(h,m�)

SIB

(h,m�,m�)1 2

SIB

(h,m�,m�)1 3

SIB

(h,m�,m�)2 3
GRAND

(g,h,m�)1

2

ARC

(h,m�) 3

ARC

(h,m�)
ARC

(g,h)

FLOW
(0,m,k)

FLOW
(n,m,k)

PATH
(m,k)

PATH-BUILDER
(m,k)

FLOW
(h,1,k)

FLOW
(h,n,k)

PATH
(h,k)

FLOW-DELTA
(h,k)

ARC
(h,m)

FLOW
(h,m,k)

FLOW-IMPLIES-ARC
(h,m,k)

ARC
(0,m)

ARC
(n,m)

SINGLE-PARENT
(m)

XOR

XOR

OR

Figure 2: Top: Example of a dependency parse tree. Each arc (h,m) links a head word h to a modifier
word m. Bottom left: Tree-based factor graph corresponding to a second-order dependency parsing model
with sibling and grandparent features [25]. Note the TREE hard constraint factor, which enforces the overall
variable assignment to encode a valid parse tree. Bottom right: The flow-based factor graph is an alternative
representation for the same model, in which extra flow and path variables are added, and the TREE factor is
replaced by smaller XOR, OR and OR-OUT factors to impose connectivity. See [19] for further information.

arcs (e.g., siblings and grandparents); the goal is to find a directed spanning tree maximizing the
overall score. We experimented with two factor graphs that represent this problem (see Fig. 2). Our
model is different from the one in Koo et al. [18], which combines a tree constraint with factors that
emulate head automata (instead of pairs of arcs); this essentially amounts to combining only two
or three slaves. In our case, both factor graphs yield O(n3) slaves (n being the number of words
in the sentence), which degrades the performance of standard DD methods. This is illustrated in
Fig. 3, which shows that DD-subgradient is slow to converge, even for the more favorable tree-
based factor graph (both with synthetic and real-world data). For this problem, Star-MSD also has
poor performance, while DD-ADMM manages to converge to a near-optimal solution very fast (note
the sharp decrease in relative error on the righthand plot, compared with DD-subgradient).

Figure 3: Dependency parsing with second-order models. For DD-subgradient, we considered both tree-based
and flow-based factor graphs, and set η0 as in Fig. 1. DD-ADMM (η = 0.05 and τ = 1.5) and Star-MSD
ran on a flow-based factor graph. Left: synthetic model for a sentence with 10 words; we randomly generated
(unary) arc log-potentials from N(0, 1), and (pairwise) grandparent and sibling log-potentials from N(0, 0.1).
Right: results on §23 of the Penn Treebank; the plot shows relative errors per iteration w.r.t. the dual optimum,
averaged over the 2,399 test sentences.

5

6 Related Work and Final Remarks
The DD method for MAP inference was first proposed for image segmentation using pairwise [17]
and higher order factor graphs [16]. It was recently adopted for natural language parsing [24, 18],
with only a couple of slave subproblems handled with dynamic programming. Accelerated DD were
first considered in [14], where the approach is to individually smooth each slave subproblem with the
addition of an entropic term, making the objective differentiable, thus adequate for gradient-based
methods. Although there are variants of ADMM that use entropic (rather than quadratic) penalties,
that does not lead to the same problem as in [14]. Quadratic problems (as in (7)) were also recently
considered in a sequential algorithm [22]; however, that algorithm tackles the primal formulation
and only pairwise models are considered.

The proposed DD-ADMM algorithm is dual decomposable, hence the slaves can all be solved in
parallel, making DD-ADMM particularly suitable for multi-core architectures, offering important
speed-ups. Finally, note that a significant amount of computation can be saved by caching and
warm-starting the subproblems, which tend to become more and more similar in later iterations. In
future work, we plan to experiment with larger slaves and approximate ADMM steps.

Acknowledgments

A. M. was supported by FCT/ICTI through the CMU-Portugal Program, and also by Priberam Informática.
N. S. was supported by NSF IIS-0915187 and an IBM faculty award. E. X. was supported by AFOSR
FA9550010247, ONR N000140910758, NSF CAREER DBI-0546594, NSF IIS-0713379, and an Alfred P.
Sloan Fellowship. This work was partially funded by the FET programme (EU FP7), under the SIMBAD
project (contract 213250), and by a FCT grant PTDC/EEA-TEL/72572/2006.

References
[1] Afonso, M., Bioucas-Dias, J., and Figueiredo, M. (2010). Fast image recovery using variable splitting and constrained optimization. IEEE

Trans. on Image Processing, 19:2345–2356.
[2] Bakır, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., and Vishwanathan, S. (2007). Predicting Structured Data. The MIT Press.
[3] Bertsekas, D., Hager, W., and Mangasarian, O. (1999). Nonlinear programming. Athena Scientific.
[4] Dantzig, G. and Wolfe, P. (1960). Decomposition principle for linear programs. Operations research, 8(1):101–111.
[5] Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient projections onto the L1-ball for learning in high dimensions.

In ICML.
[6] Eckstein, J. and Bertsekas, D. (1992). On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone

operators. Mathematical Programming, 55(1):293–318.
[7] Figueiredo, M. and Bioucas-Dias, J. (2010). Restoration of Poissonian images using alternating direction optimization. IEEE Trans. on

Image Processing. to appear.
[8] Gabay, D. and Mercier, B. (1976). A dual algorithm for the solution of nonlinear variational problems via finite element approximation.

Computers and Mathematics with Applications, 2(1):17–40.
[9] Globerson, A. and Jaakkola, T. (2008). Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations. NIPS, 20.
[10] Glowinski, R. (1984). Numerical methods for nonlinear variational problems. Springer-Verlag.
[11] Glowinski, R. and Marroco, A. (1975). Sur l’approximation, par elements finis dordre un, et la resolution, par penalisation-dualite dune

classe de problemes de Dirichlet non lineares. Revue Française dAutomatique, Informatique et Recherche Opérationelle, 9:41–76.
[12] Goldfarb, D., Ma, S., and Scheinberg, K. (2010). Fast alternating linearization methods for minimizing the sum of two convex functions.

Technical Report 10-02, UCLA CAM.
[13] Hestenes, M. (1969). Multiplier and gradient methods. Jour. Optim. Theory and Applic., 4:302–320.
[14] Jojic, V., Gould, S., and Koller, D. (2010). Accelerated dual decomposition for MAP inference. In Proc. of ICML.
[15] Kolmogorov, V. and Wainwright, M. (2005). On the optimality of tree-reweighted max-product message passing. In UAI, volume 21.

Citeseer.
[16] Komodakis, N. and Paragios, N. (2009). Beyond pairwise energies: Efficient optimization for higher-order MRFs. In Proc. of CVPR

2009, pages 2985–2992.
[17] Komodakis, N., Paragios, N., and Tziritas, G. (2007). MRF optimization via dual decomposition: Message-passing revisited. In

International Conference on Computer Vision. Citeseer.
[18] Koo, T., Rush, A. M., Collins, M., Jaakkola, T., and Sontag, D. (2010). Dual decomposition for parsing with non-projective head

automata. In Proc. of EMNLP.
[19] Martins, A. F. T., Smith, N. A., Xing, E. P., Figueiredo, M. A. T., and Aguiar, P. M. Q. (2010). Turbo parsers: Dependency parsing by

approximate variational inference. In Proc. of EMNLP.
[20] Meshi, O., Sontag, D., Jaakkola, T., and Globerson, A. (2010). Learning Efficiently with Approximate Inference via Dual Losses. In

Proc. ICML. Citeseer.
[21] Powel, M. (2009). A method for nonlinear constraints in minimization problems. In Fletcher, R., editor, Optimization, pages 283–298.

Academic Press.
[22] Ravikumar, P., Agarwal, A., and Wainwright, M. (2010). Message-passing for graph-structured linear programs: Proximal methods and

rounding schemes. JMLR, 11:1043–1080.
[23] Richardson, T. and Urbanke, R. (2008). Modern coding theory. Cambridge Univ Pr.
[24] Rush, A. M., Sontag, D., Collins, M., and Jaakkola, T. (2010). On dual decomposition and linear programming relaxations for natural

language processing. In Proc. of EMNLP.
[25] Smith, D. A. and Eisner, J. (2008). Dependency parsing by belief propagation. In Proc. of EMNLP.
[26] Tarlow, D., Givoni, I. E., and Zemel, R. S. (2010). HOP-MAP: Efficient message passing with high order potentials. In Proc. of AISTATS.
[27] Wainwright, M. J. and Jordan, M. I. (2008). Graphical Models, Exponential Families, and Variational Inference. Now Publishers.

6

