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Resumo

Modelos do Corpo Humano e a sua análise são, hoje em dia, utilizados em diversas áreas de

aplicação, que vão da medicina à vigilância e segurança. Nesta tese, focamo-nos na criação au-

tomática de modelos biomecânicos para aplicações clı́nicas e no desporto.

Os mais modernos sistemas de captura de movimento são capazes de medir as coordenadas

3D de marcadores reflectores, colocados sobre a pele, com precisão considerada suficiente. Os

actuais desafios que a análise da marcha enfrenta são a reprodutibilidade dos resultados, a criação

de modelos personalizados, e a compensação dos artefactos causados pelos tecidos moles.

Desenvolvimentos recentes nas abordagens de structure from motion permitiram a extracção de

estruturas rı́gidas articuladas com base em sequências de imagens 2D do seu movimento. Nesta tese,

apresentamos um método automático para extrair os parâmetros das juntas mecânicas, que modelam

as articulações humanas, a partir do das trajectórias 3D devolvidas pelos sistemas de captura de

movimento. Descrevemos ainda uma nova abordagem que estima com maior precisão a componente

rı́gida de um corpo não rı́gido, lidando ainda com a oclusão de alguns marcadores.

Para lidar com os artefactos causados pelos tecidos moles, é proposto um novo modelo quadrático

para corpos deformáveis, definido como uma extensão dos modelos de corpo rı́gido existentes. Os

parâmetros deste modelo são estimados com base em técnicas de optimização não-lineares.

Finalmente, a performance dos algoritmos é avaliada com base em dados sintéticos, e os resul-

tados comparados aos valores reais dos parâmetros. Apresentamos também uma análise qualitativa

dos algoritmos com base em dados reais.

Palávras-chave: Análise da Marcha, Modelos do Corpo Humanos, Factorização, Modelação não-

linear, Biomecânica, Factorização.
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Abstract

Human body models and their analysis are nowadays used in a wide range of applications, span-

ning from medicine to security and surveillance. In this thesis, we focus on the automatic creation of

biomechanical human models for clinical and sports applications.

State of the art motion capture systems are able to measure the 3D coordinates of reflective mark-

ers placed above the skin with sufficient accuracy. The main issues clinical gait analysis is currently

facing are the repeatability of the measurements, the creation of subject-specific models, and the com-

pensation for soft-tissue movement.

Recent developments on structure from motion approaches have allowed the efficient recovery of

articulated structures from a set of 2D images. In this thesis, we present a method to automatically

recover joint parameters modelling the human articulations, from the 3D coordinates of a point cloud

provided by motion capture systems. Additionally, we describe a novel approach capable of recovering

a more accurate rigid body description of non-rigid bodies, and which is dealing as well with the problem

of marker occlusions.

In order To deal with soft-tissue artifacts, we propose a new quadratic model for deformable bodies,

as a natural extension of the existing rigid body models. The parameters of this model are estimated

using a non-linear optimization technique.

Finally, we use synthetic data to assess the performance of the algorithms and compare the results

with ground truth data. Qualitative analysis of real data sequences are also presented.

Keywords: Gait analysis, Human body models, Factorization, Non-linear modelling, Biomechanics.
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Chapter 1

Introduction

A human body model is a mathematical description of its anthropometry, physiology or topol-

ogy [1]. For instance, models can be built to test the human physiological response on crashworthiness

tests [2], or to predict bone remodelling behaviour under different stress conditions [3]. In this thesis we

focus on the computational modelling of the human body muskoloskeletal system i.e. on developing

computational models of full body motion.

A Motion Capture (MOCAP) system is a device able to recover a full description of the motion on

a scene, in order to analyse or transfer it to a digital model of the object performing the motion [4].

MOCAP systems are subdivided in mechanical, magnetic, ultrasonic or optical systems, being the

categorization given by the physical principle by which the motion is detected and captured. Although

the setup may be distinct among the different types of systems, they all have in common the fact that

they detect the spatial location of a set of feature points in order to describe the motion of the scene.

Given all the different types of MOCAP systems, optical systems have emerged as the primary choice

for most of the applications as this setup provides a precision of the order of 1 mm for the 3D position of

the feature points [5, 6, 4]. The most usual setup for optical MOCAP systems is composed of calibrated

infrared cameras (at least 2, but typically more then 6) arranged around the area to be captured, and

passive (reflective) markers, with diameter between 9 to 25 mm, placed on the surface of the object

(see Figure 1.1) [6]. The output of the system is the set of 3D coordinates of the tracked markers over

time.

The output of MOCAP systems is usually applied to animate previously existent digital models.

However this approach not only requires great effort in building the model, but also limits the accuracy

and versatility of the analysis, as it is bounded to adjust the existent model to the current application. In

opposition, we will focus on the problem of creating a human model based on data acquired by MOCAP

systems, as this approach guarantees subject specific modeling.
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Figure 1.1: Example of a marker setup for a MOCAP analysis.

1.1 Motivation

Nowadays MOCAP systems are used to capture human motion in a variety of fields such as

medicine [6], sports [7, 8], computer vision [9], character animation [10], or identification, security

and surveillance [11]. In this thesis we will focus on biomechanical models of the human body i.e.

on models that accurately describe the motion of the articulations, in order to predict the forces and

momenta associated with it. This is in contrast with other applications such as character animation,

where the focus is on the visual aspect of the model [12].

Biomechanics is the discipline that uses mechanical principles in order to study living organisms [7].

When applied to sports, it is a powerful tool that provides a qualitative and quantitative analysis in order

to improve performance and to prevent or treat injuries [7]. In sports where the technique is a dominant

factor, an analysis of the human motion can lead to an improvement of the performances, based on

the information about articulations and muscles [13]. The information can also be used to evaluate the

effect of a given motion of muscles and articulations, in order to prevent injuries or generate preventive

and rehabilitative therapies [7].

In medicine, gait analysis is the main application of motion analysis tools. The study of the al-

terations in normal gait patterns are very important on areas such as cerebral palsy or prosthetic

limbs, orthoses and total joint replacements, providing information both for diagnosis and treatment

options [6, 14, 15].

When performing biomechanical studies on the human body, building accurate human models is

one of the key steps for achieving meaningful results. When a generic study about a given motion

is being conducted, the model can be built based on anthropometric data. However, when applying
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biomechanics in clinical cases or sports, models must be subject specific in order to have accurate

results. In sports it is expected that only top athletes could have access to this technology in order to

enhance their performances, thus their relatively small number can justify an extensive user interven-

tion on the creation of individualised models. However, when we think about the universe of clinical

patients that would benefit from this technology, the amount of resources dedicated just to building the

custom models would be unbearable. Consequently, there is a need for finding methods to automati-

cally create subject-specific reliable models.

One of the main problems of current methods for joint parameter estimation based on MOCAP

systems is their limited repeatability [6]. A considerable amount of cases have been found where a

subject is examined at two different laboratories, and the results differ significantly. This is a strong

setback on the applications of these methods as accuracy and repeatability is of extreme importance

in clinical analysis.

Another major source of error in MOCAP analysis are the soft-tissue artifacts [12, 16, 17]. In

fact, although the relevant information about articulations used to build human models is given by the

skeleton, the reflective markers used by MOCAP systems are placed above the skin. When examining

a subject, there is an inherent relative motion between the soft-tissues surrounding the bone and the

bone itself. These relative motions create artifacts on the data that degrade performances.

A key step in joint parameter estimation is the model calibration i.e. creating a model for the analysis

that is subject-specific [6]. As mentioned above, this is essential to achieve accurate results. Some of

the existing methods require accurate placement of reflective markers over some specific anatomical

landmarks. Not only there is an inherent variability due to human error (different staff members will be

placing the markers during the analysis), but also the landmarks are not easily found on all patients,

depending on their medical conditions, e.g., obesity [6]. Thus, methods that do not rely on specific

landmarks locations would be preferred.

In Summary, the main issues regarding gait analysis are the soft-tissue artifact, the subject specific

modelling and the repeatability of the measurements. Our motivation is thus to tackle these issues, in

order to have both a reliable tool for clinical applications, which can aid in diagnosis and rehabilitation,

and a method that can be applied to sports, in order to enhance performances and prevent injuries.

Nevertheless, we must not forget that MOCAP systems and human models are used in a wider range

of applications that will also benefit from these improvements.

1.2 Prior work

As stated before, systems used to capture human motion are generally optical MOCAP systems,

based on markers placed over the skin of the subject performing the motion. Most of the existent clinical

systems for gait analysis use markers placed at specific anatomic landmarks. Regression techniques

are then used to fit this data to a Conventional Gait Model (sometimes called Helen Hayes model),

which models the hip, knee and ankle articulations as joints with 3 degrees of freedom [6]. As stated

3



above, a disadvantage of this setup is the fact that it uses a small number of feature points that have

to be accurately placed over anatomic landmarks, which in some cases are not very well defined in

patients with certain medical conditions [6]. Besides, evidence has been brought up that most common

equations used for regression provide unsatisfying results [18].

Other methods do not rely on regression techniques to compute the joint properties. For instance,

some approaches use a method called anatomical calibration [6], which relies on a previously existent

model of the joints. The joint parameters are then computed by fitting the data from the MOCAP sys-

tems, acquired while performing predetermined actions, to the existing model. For instance, markers

attached to a body segment belonging to an articulation modelled as a ball and socket joint, would

have their coordinates lying on a sphere centred at the joint centre. The joint centres are then com-

puted by fitting the data to the ball and socket model using least-square optimization techniques [6] .

Similar approaches can be used to model other articulations based on the choice of mechanical joint

to use. The disadvantage of this method is that in some cases the performance of the test movements

is impossible due to the medical conditions of the patients.

As mentioned in Section 1.1, one of the major sources of error in these measurements is the soft-

tissue artifact, and so several attempts have been made to cope with this problem. Using optimization

techniques to fit the motion capture data to a model, is one of them. For instance, attempts have been

made to describe the real bone movement as a function of the observed soft-tissue movement, over all

the range of motion [19, 20]. However, this approach suffers from the fact that the true bone motion is

actually hard to define, as there is no consensus about a gold-standard for these measurements [6].

With the evolution of MOCAP systems, the number of feature points that can be tracked has in-

creased since the first systems were created. This allowed the layout of new techniques such as point

cluster techniques (PCTs). PCTs rely on the fact that, when using a higher number of features than the

minimum number required, there is a redundancy in information, which will make soft-tissue artifacts

less relevant [21]. This technique was later extended to a weighted algorithm, where points with higher

deformations were given less weight when computing the joint parameters [19].

Recovering the structure of general objects based on information about their motion is a subject of

interest in the field of computer vision, originating the family of algorithms designated structure from

motion (SfM). These algorithms were first developed aiming to recover 3D shapes from a set of 2D

images with multiple views of the scene. Although their motivation is not the same as ours, applications

of such algorithms in medicine and sports can easily follow. From the different existing approaches we

highlight the factorization-based approach as the one that has given more promising results.

Factorization methods for SfM are computational methods that use the unique rank properties of

the measurement matrix to decompose it in a motion and shape factors. The first factorization meth-

ods for SfM were able to recover the shape and motion of a rigid object moving in a scene [22, 23].

Later, the approach was extended to recover structure and motion of various objects moving indepen-

dently [24], and to deal with non-rigid objects with small deformations, using linear combinations of

basis shapes [25, 26, 27, 28].
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The next extension to factorization methods was made to deal with articulated objects. While the

first approaches were based on fitting MOCAP data to previously existent models of the objects [29, 30],

recent developments resulted on approaches that are able to infer articulated structure based solely

on the motion data [31, 32]. Consequently, these approaches are of great interest when thinking

about the creation of biomechanical models. To the best of our knowledge there are no applications of

factorization methods for SfM in sports or medicine.

Although marker-based MOCAP systems are the most popular systems in clinical research, al-

ternative approaches have also been considered. Among them, there are methods such as stereo

radiography, bone pins, external fixation devices, and single or double plane fluoroscopy. However

these methods are either invasive, or they limit motion range, or they require the exposure of the sub-

ject to radiation [6]. Models based on magnetic resonance imaging (MRI) have also been used [33, 34].

Although they can provide a detailed image of bones and muscles, this technique only works within

small volumes and so their application is limited.

1.3 Objective

The objective of this work is to develop an algorithm to automatically compute biomechanical models

of the human body based on the data provided by 3D MOCAP systems. We seek an algorithm that can

be independent of the given MOCAP system’s setup, only requiring a relatively high number of markers

on each body segment. We also assume the segmentation of the data is known (i.e. to which body

segment belongs a given set of points). The models should be able to deal with the main sources of

error of the current systems: They should be subject specific; they should deal with soft-tissue artifacts;

and they should be reasonably accurate in determining the joint parameters.

1.4 Proposed approach

Our method is a PCT where we assume the motion segmentation of each body limb to be known.

Our approach is to recover the joint parameters using the recent developments on SfM algorithms for

rigid articulated objects. Since we are normally dealing with non-rigid objects, we refine our algorithm

by applying a variation of the weighted PCT, based on least-squares optimization, so that we have a

first rigid approximation for each segment. Later, we use our own quadratic model for non-rigid bodies,

initialized by the first estimate of the rigid segment, to compute a more accurate rigid component of

the non-rigid segments. Finally, we combine the techniques for articulated SfM and our model for the

non-rigid segments, to provide a final 3D articulated model of the human body.

We perform experiments using both synthetic and real data. Model validation is done solely by

using synthetic data. Validating these kind of models with real data requires the knowledge of the real

locations of joint centres and bone motions, which are not trivial to obtain since it requires specific

equipment [12]. Therefore, validating with real data will be left as future work. However, we apply the
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algorithm to real data with the purpose of illustrating real applications of these algorithms, from which

a first qualitative evaluation of performance can be done.

1.5 Original contributions

We emphasise the following original contributions:

• While the original SfM approaches are based on sequences of 2D images, in this work we present

a consistent 3D re-formulation of the factorization approach for independent and articulated rigid

bodies.

• We present a weighted factorization approach that is not only able to retrieve a more accurate

rigid body description, but also it is able to deal with occlusion, which is one of the main issues

on SfM algorithms.

• Additionally, we propose a new quadratic model to describe non-rigid bodies in order to model

soft-tissues. With accurate modelling of soft-tissues we are able to retrieve a more accurate

description of the rigid component of the movement (the bone) and provide more accurate artic-

ulation modelling.

Part of this work has been published in the Proceedings of the 8th International Symposium for

Computer Methods on Biomechanics and Biomedical Engineering (CMBBE 2008) [35].

1.6 Thesis structure and organization

The thesis is structured as follows. Chapter 2 introduces the SfM factorization approach, with a

detailed description of the independent and articulated rigid body factorization methods in the three

dimensional case that we will apply for articulation modelling. We also present a weighted algorithm to

retrieve a more accurate rigid body description when dealing with quasi-rigid objects and occlusion.

In Chapter 3 we propose a new quadratic model for non-rigid bodies. In order to compute the

parameters for the quadratic model, we also present a Levenberg-Marquardt optimization scheme

(generically termed as bundle-adjustment), that takes advantage of the particular characteristics of this

model to achieve a more efficient computation.

Chapter 4 presents the MATLAB implementation of visualization and manual motion segmentation

software tools. We briefly describe their functionalities and how they can help fulfilling the identification

of each body part and their visualization in 3D.

In Chapter 5 we test all our algorithms providing a performance analysis for each of them. We

also present real data applications of these algorithms for qualitative analysis and illustration purposes.

Chapter 6 concludes this thesis with final considerations and directions for future work.
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Chapter 2

Factorization Method for Structure

from Motion

Factorization methods for structure from motion are a family of image based algorithms that model

moving objects as a product of two factors: motion and shape. The shape parameters are defined

as the 3D geometric properties of the object; the motion parameters are defined as the time-varying

parameters of the motion (e.g. rotations and translations of the rigid body) that the shape performs

in a metric space. One of the first factorization methods was proposed by Tomasi and Kanade [22].

This method successfully recovered camera motion and scene geometry (shape) based on a stream

of 2D images. A certain number of feature points would be selected and tracked over the stream of

images, providing the basis for the factorization algorithm. Our factorization approach, similarly to [22],

assumes a set of P 3D feature points being tracked over F frames by a MOCAP system. This method

relies on the key fact that 3D trajectories of points belonging to the same body share the same global

properties.

The 3D trajectories provided by the MOCAP system can be arranged in a 3F × P measurement

matrix W as:

W =


w11 . . . w1P

...
. . .

...

wF1 . . . wFP

 , (2.1)

where wij are the 3D coordinates of point j at frame i. Each 3D point wij can be written as:

wij =


rT

1i txi

rT
2i tyi

rT
3i tzi




xj

yj

zj

1

 =
[
Ri ti

] sj

1

 , (2.2)

where sj is a 3-vector that has the 3D coordinates of point j, describing the shape, on a local referential;

Ri and ti are respectively the 3 × 3 rotation matrix and 3-vector of the translation parameters that
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Wi 
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ti 

 Local Coordinates 
Global Coordinates 

Figure 2.1: Graphical representation of the physical meaning of the motion and shape factors. The
shape matrix S contains the 3D coordinates of the (blue) points that define the body, on the local (red)
referential. The rotation matrix Ri and translation vector ti represent the coordinate transformations
that describe S on the global (black) referential, resulting in Wi.

describe sj on a global referential (see Figure 2.1). Stacking these equations for all the F frames and

P points results in:

W =


W1

W2

...

WF

 =


R1

R2

...

RF



x1 x2 · · · xP

y1 y2 · · · yP

z1 z2 · · · zP

+


T1

T2

...

TF

 = MS + T, (2.3)

where Ti = ti1T
P , with 1T

P being a P -vector with all entries equal to 1. The translational component ti

can be computed as the coordinates of the centroid of the point cloud at each frame Wi. Thus, it can

be easily eliminated by registering, at each frame, the point cloud to the origin i.e at each frame we

subtract to the coordinates of every point the mean of the point cloud coordinates. In this scenario, it

frequently occurs that, instead of W, we consider a registered form of this matrix i.e. we use a matrix W̃

such that:

W̃ = W− T = M S. (2.4)

2.1 Rigid body

Let us consider the model defined in equation (2.3). Since M is a 3F × 3 matrix, and usually F � 3,

by the properties of the rank of a matrix, rank(M) ≤ 3. On the other hand, since S is a 3 × P matrix,

and usually P � 3, we also know that rank(S) ≤ 3. Although T is a 3F × P matrix we know that all

its columns are equal. Thus, as it only has one linearly independent column, rank(T) = 1. From this

considerations on the rank of M, S and T and by equation (2.3) we can now say that rank(W) ≤ 4. For

the model defined by equation (2.4), since we have no translations, only M and S contribute to the rank

of W̃ and so rank(W̃) ≤ 3. However the rank properties are only valid in the ideal case with no noise.

8



When performing real experiments there will always be some noise which will increase the rank of W̃.

Noise can originate for instance from the MOCAP system’s uncertainty in the position of the tracked

feature points or some non-rigidity of the tracked objects.

Consider the singular value decomposition (SVD) of the registered matrix W̃ defined by:

W̃ = U3F×3F Σ3F×P V
T
P×P , (2.5)

where U and V are orthogonal matrices, and Σ is a diagonal matrix whose entries are the singular

values σi of W̃. Singular values are by definition non-negative (σi ≥ 0) and are ordered in Σ, from top to

bottom, in a decreasing way. Also there are as many positive singular values in a matrix as its rank i.e.

if r = rank(W̃), σi > 0 ∀i ≤ r.

The truncated SVD is a version of the decomposition that constraints the result to a rank−k matrix.

This is done by setting to zero all but the first k singular values. Consequently we can now use only the

first k columns of U and V to compute the transformation. Mathematically, the rank − k truncated SVD

can be described as:

Ŵ = Uk Σk V
T
k , (2.6)

where Uk is a 3F × k matrix with only the first k columns of U, Vk a P × k matrix with only the first

k columns of V, and Σk k × k the diagonal matrix with the first k diagonal entries of Σ. This result is

the best approximation of W̃ to a rank − k matrix in the Frobenius norm sense. Since we know the

ideal value for rank(W̃) to be 3, we can use a rank − 3 truncated SVD as a first global optimal fit to the

measurements.

The rank−3 truncated SVD is not only useful in noise reduction but it can also be used the starting

point for the factorization algorithm. Considering the expected dimensions of M and S we can compute

a first estimation of these as:

M̂ = U3 Σ
1/2
3 ; (2.7)

Ŝ = Σ
1/2
3 VT

3 . (2.8)

However there exists an ambiguity in this factorization as any A 3 × 3 invertible matrix will satisfy the

equality:

M̂ Ŝ = M̂ A A−1 Ŝ. (2.9)

Being A an invertible matrix, it can be shown that it has an QR factorization i.e it can be factorized in

the matrix product A = QR, where R is a 3×3 orthogonal matrix, and Q is a 3×3 upper triangular matrix.

This implies that:

A A−1 = Q R R−1 Q−1 = Q Q−1, (2.10)
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with the ambiguity being expressed in terms of the matrix product of an upper triangular matrix and

its inverse. The initial factorization proposed in equations (2.7) and (2.8) do not guarantee that M̃ is in

fact a collection of F 3× 3 rotation matrices. Thus the ambiguity stated in equation (2.10) is solved by

finding the matrix Q that will transform each 3 × 3 matrix M̂i in a rotation (orthogonal) matrix Ri. This

can be achieved by imposing orthogonality constraints on M̂iQ, which is done by solving the set of linear

equations for all the F frames:

mT
ik H mik = 1, (2.11)

mT
ik H mil = 0, l 6= k, (2.12)

with k, l = 1, 2, 3, mik and mil are respectively the k-th and l-th row of matrix M̂i, and H = Q QT

is symmetric matrix (as Q is upper triangular). Q can thus be recovered from H by using Cholesky

decomposition. We update the factorization in equations (2.7) and (2.8) to:

M = M̂ Q; (2.13)

S = Q−1 Ŝ. (2.14)

While some algorithms solve this ambiguity in a frame-by-frame analysis, by using all the data available

in W̃ to compute Q, we are actually taking in consideration all the frames to compute S. In this way we

can find the factors M and S that are more consistent with the whole motion. Finally, we can reconstruct

Ŵ as the product of the two parameters estimated by equations (2.13) and (2.14).

When the scene is composed of N rigid objects moving independently, the same considerations

are valid. The model is simply expanded for each of the different independent objects, with S showing

a block diagonal structure:

W̃ =
[
M1 M2 . . . MN

]


S1

S2

. . .

SN

 . (2.15)

Thus, rank(W̃) ≤ 3N when translations are not considered. If we consider translations, each model will

increase their rank by 1 dimension and so we will have rank(W) ≤ 4N if translations are considered.

2.2 Articulated motion

As seen in section Section 2.1, when N rigid objects are moving independently, rank(W̃) ≤ 3N , in

the case of the registered motion, and rank(W) ≤ 4N when we consider translations. However if the

rigid objects are linked by joints their motions are not independent and there is a loss in the degrees

of freedom of the system. This constraint on the movement manifests itself in the measurement matrix
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W as a decrease in rank [31, 36]. For the sake of simplicity we will only consider systems of two rigid

bodies linked by a joint, despite the fact that these constraints are easily extended to a linked chain of

rigid bodies.

2.2.1 Universal joint

By universal joint we man a kind of joint in which each of the two bodies is at a fixed distance

to the joint centre, being the relative position of the bodies constrained, but their rotations remaining

independent. In mechanics, this joint is usually denominated spherical joint. A scheme of this joint is

presented in Figure 2.2.

d(2) 
d(1) 

 

Figure 2.2: Scheme of a universal joint. The first body is represented by red points, while the second
body is represented by blue points. The joint centre is shown as a black point. The 3-vector d(1) stands
for 3D coordinates of the joint centre in the local referential of the first body. The 3-vector d(2) stands
for 3D coordinates of the joint centre in the local referential of the second body.

Let d(1) = [u, v, w]T be the 3D coordinates of the joint centre in the local referential of the first body;

−d(2) = [u′, v′, w′]T be the 3D coordinates of the joint centre in the local referential of the second

body; R(1) and R(2) the 3F × 3 matrices corresponding to a collection of 3 × 3 global rotation matrices

over F frames, for the first and second body respectively; t(1) and t(2) the 3F -vectors corresponding

respectively to the first and second body global translation vectors.

The joint centre can thus be seen as a point that belongs to both bodies. In other words, its position

can be described using the motion equations for the first and second body. With these considerations,

a geometrical analysis of the joint structure reveals that:

R(1)d(1) + t(1) = −R(2)d(2) + t(2). (2.16)

Equation (2.16) is the mathematical formulation of the constraint of the universal joint. Thus we can

write t(2) as a function of t(1) (or vice versa) which is equivalent to state that both 4D subspaces have

a 1D intersection. The result of this consideration is that the measurement matrix of the universal joint

must have rank(W) ≤ 7, one dimension less when comparing to the case of two independent rigid

bodies. We are now able to factorize the measurement matrix as:
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W =
[
W(1) W(2)

]
=
[
R(1) R(2) t(1)

]
S(1) D(1)

03×P1 S(2) + D(2)

1T
P1

1T
P2

 , (2.17)

where W(1) and W(2) are respectively the measurement matrices for the first and second body; D(1) =

d(1) 1T
P2

and D(2) = d(2) 1T
P2

, where P1 and P2 are the number of points belonging the first and second

body respectively, 1P1 a P1-vector with all entries equal to 1 and 1P2 a P2-vector with all entries equal

to 1; 03×P1 is a 3× P1 zero matrix. Notice that in order to separate W(1) from W(2), we must assume the

body segmentation to be known.

To recover the structure of the joint, one needs to find d(1) and d(2). From equation (2.16) we can

see that

[
R(1) , R(2) , t(2) − t(1)

]
d(1)

d(2)

−1

 = 0. (2.18)

Therefore the joint parameters d(1) and d(2) are easily computed once we have found the motion

parameters R(1), R(2), t(1) and t(2). By using an approach similar to the one used in Section 2.1 for

the independent rigid body, we first register each body to the origin of the global referential. As the

universal joint constraint is described by a dependency between the translational components, the

registered measurement matrix W̃ is a 3F × (P1 + P2) rank − 6 matrix, and so:

W̃ =
[
R(1) R(2)

] S(1) 0

0 S(2)

 , (2.19)

where S(1) is a 3×P1 global shape matrix for the first body and S(2) is a 3×P2 global shape matrix for

the second body. The initial step in the factorization is then done by performing a truncated SVD with

k = 6:

W̃ = Uk Σ
1/2
k Σ

1/2
k VT

k =
[
U(1) U(2)

]
3F×6

[
V(1) V(2)

]
6×(P1+P2)

. (2.20)

However the factorization is not final as
[
V(1)|V(2)

]
is a dense matrix while the structure matrix defined

in equation (2.19) has a specific structure. If we define an operator Nl(.) that returns the left null-space

of its argument, we can define a 6× 6 transformation matrix TU such that:

TU =

 Nl(V(2))

Nl(V(1))

 . (2.21)

We can now recover S by pre-multiplying it by TU :
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S =

 Nl(V(2))

Nl(V(1))

[ V(1) V(2)
]

=

 Nl(V(2)) V(1) Nl(V(2)) V(2)

Nl(V(1)) V(1) Nl(V(1)) V(2)

 =

 S(1) 0

0 S(2)

 . (2.22)

As we must keep the original data unaltered, we have to post-multiply
[
U(1)|U(2)

]
by T−1

U :

M =
[
U(1) U(2)

] Nl(V(2))

Nl(V(1))

−1

=
[
M(1) M(2)

]
, (2.23)

where M(1) and M(2) are respectively the motion matrix for the first and second body. Note that the

ambiguity seen in equation (2.9) is still present here for each body, and so there is no guarantee that

M(1) or M(2) are a collection of 3 × 3 rotation matrices. Due to the specific configuration of S seen in

equation (2.19), there is no linear method to impose the orthogonality constraints to M while assuring

that structure for S. We chose to separate W(1) and W(2) treating them individually in the same way it

was done for the independent rigid body in Section 2.1. Even though it is a suboptimal solution, as we

are not using all the available data to solve the ambiguity, it is good approximation and it uses a simple

linear form. Thus we apply in each case the transformation matrix Q as used before on equations (2.13)

and (2.14).

After the estimation of the motion parameters we can finally solve the null-space problem stated in

equation (2.18) to find the joint parameters d(1) and d(2).

2.2.2 Hinge joint

In a hinge joint, two bodies can rotate around an axis such that the distance to that rotation axis is

constant. Therefore their rotation matrices R(1) and R(2) are not completely independent. A scheme of

the hinge joint is presented in Figure 2.3.

 

x 

d(2) 
d(1) 

Figure 2.3: Scheme of a hinge joint. The first body is represented by red points, while the second body
is represented by blue points. The joint centre is shown as a black point. The x-axis represents the
rotation axis. The 3-vector d(1) stands for the 3D coordinates of the joint centre in the local referential of
the first body. The 3-vector d(2) stands for the 3D coordinates of the joint centre in the local referential
of the second body.

We keep the notation presented in Section 2.2.1 for the universal joint, where d(1) = [u, v, w]T are
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the 3D coordinates of the joint centre in the local referential of the first body, −d(2) = [u′, v′, w′]T

are the 3D coordinates of the joint centre in the local referential of the second body, R(1) and R(2) the

3F × 3 matrices corresponding to a collection of 3 × 3 global rotation matrices over F frames for the

first and second body respectively, t(1) and t(2) the 3F -vectors corresponding respectively to the first

and second body global translation vectors.

By analysing the geometry of the joint, we can see that every vector belonging to any of the two

bodies, that is parallel to the joint axis, must remain so throughout the movement. Let us choose

an appropriate local referential, without loss of generality, where the axis of rotation of the joint is

coincident with the x-axis. Let ex = [1 0 0]T be a vector representing the x-axis. Applying a general

3× 3 rotation matrix R = [c1 c2 c3] to ex will result in c1 ·ex i.e the only column of the rotation matrix that

affects vectors parallel to the x-axis is the first one. Therefore, to comply with the joint constraints, the

first column of R(1) must be equal to the first column of R(2). We can now define the rotation matrices

as R(1) = [c1 c2 c3] and R(2) = [c1 c4 c5]. As all the points belonging to the rotation axis must fulfil

both movement conditions, this results in a 2D intersection of the original 4D subspaces. Thus, when

considering translations, W will then be given by:

W =
[

c1 c2 c3 c4 c5 t(1)
]


x
(1)
1 · · · x

(1)
P1

x
(2)
1 · · · x

(2)
P2

y
(1)
1 · · · y

(1)
P1

0 · · · 0

z
(1)
1 · · · z

(1)
P1

0 · · · 0

0 · · · 0 y
(2)
1 · · · y

(2)
P2

0 · · · 0 z
(2)
1 · · · z

(2)
P2

1T
P2

1T
P2


, (2.24)

where, as defined in Section 2.2.1, P1 and P2 are the number of points belonging to the first and second

body respectively, 1P1 a P1-vector with all entries equal to 1 and 1P2 a P2-vector with all entries equal

to 1. In this case, rank(W) = 6, if translations are not considered.

Since the constraints of this joint are limited only by the rotation matrices, it is possible to register

the shapes to the origin of the referential without any influence on the constraints. By removing the

translational factor in equation (2.24), we will get the rank − 5 system defined by:

W̃ =
[

c1 c2 c3 c4 c5

]


x
(1)
1 · · · x

(1)
P1

x
(2)
1 · · · x

(2)
P2

y
(1)
1 · · · y

(1)
P1

0 · · · 0

z
(1)
1 · · · z

(1)
P1

0 · · · 0

0 · · · 0 y
(2)
1 · · · y

(2)
P2

0 · · · 0 z
(2)
1 · · · z

(2)
P2


. (2.25)

Once again we use the truncated SVD of W̃ as the first step on the parameter estimation. For this

case we use k = 5 in equation (2.6), giving a result similar to equation (2.20):

W̃ = Uk Σ
1/2
k Σ

1/2
k VT

k =
[
U(1) U(2)

]
3F×5

[
V(1) V(2)

]
5×(P1+P2)

. (2.26)
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As we have seen in Section 2.2.1 this matrix [V(1)|V(2)] is dense matrix, but what we need is to compute

a matrix S with the structure defined in equation (2.25). Let TH be a transformation matrix such that:

TH =


bT

Nl(V(2))

Nl(V(1))

 , (2.27)

where Nl(.) is the operator that returns the left null-space of its argument defined previously in Section

2.2.1, and bT = [1 0 0 0 0 0]. By pre-multiplying [V(1)|V(2)] with TH we leave the first row intact and we

zero-out some entries in order to get the structure presented in equation (2.25). Again, we need to

post-multiply [c1 c2 c3 c4 c5] with T−1
H to keep the original data unaltered.

As observed in Section 2.1, in this approach arises an ambiguity. Following the same method as

used in Section 2.2.1 for the universal joint, we separate W(1) and W(2) and use the transformation matrix

Q as in equations (2.13) and (2.14) to solve for the ambiguity.

Now that we have the motion parameters, the last step is to recover the joint description. In the

case of a hinge joint, the joint centre can lie anywhere on the axis of rotation. Still it must obey both

motion equations i.e. equation (2.16) is still valid. Combining equation (2.16) with the properties of R(1)

and R(2) for the hinge joint, the null-space problem defined by equation (2.18) can now be stated for

this case as:

[
c1 , c2 , c3 , c4 , c5 , t(2) − t(1)

]


u+ u′

v

w

v′

w′

−1


= 0. (2.28)

The null-space problem stated in equation (2.28) defines the coordinates of a point belonging to the

rotation axis. Notice that we defined the axis of rotation aligned with the x-axis, so its direction is also

known. Based on this knowledge we can now represent the rotation axis by a parametric equation of a

line l(α) parallel to the x-axis that contains the joint centre:

l(α) = [c1 c2 c3] [α, v, w] + t(1) ∀α ∈ R. (2.29)

2.3 Quasi-rigid objects and weighted factorization

The algorithms described in Section 2.1 and Section 2.2 solve the problem when the observed body

is rigid. When dealing with non-rigid bodies they can still be used as a coarse rigid approximation of the

data. As mentioned in Chapter 1, the meaningful information about how the human body articulates

is given by modelling the skeleton, which, at this level of analysis, can be considered rigid. Still,
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MOCAP systems work based on capturing the 3D coordinates of markers placed above the skin, and

are affected by the relative motions between soft-tissue and bone that happen while the subject is

moving. Dealing with non-rigid bodies is thus one of the main challenges when developing algorithms

for this purpose.

When using an SVD to estimate the motion and shape parameters, the resulting shape will be the

one that minimises the error in a least-squares sense over all the frames. Nonetheless this might not

be the best representation of the rigid component of the non-rigid shape. Factorizing with the previous

algorithms can be seen as averaging the shape throughout the frames, resulting in an attenuation

of the deformations. Inspired by previous approaches [37, 38, 39, 40], what we present here is an

approach that uses a weighted SVD in order to penalise the contribution of the points which deform

most. By doing so we will attenuate the contribution of the deformations, obtaining a more accurate

rigid representation of the body.

2.3.1 The weighted factorization algorithm

When considering the weighted factorization approach, our goal is to find a better global rigid shape

representation of a quasi-rigid body based on a penalisation of the points which deform the most. Let us

assume for a moment that we know the best global rigid shape, and that its registered 3D coordinates

over time are described by a matrix W̃
(r). Let the matrix W̃ represent the data matrix resulting from

tracking the quasi-rigid body with a MOCAP system, also registered. A measure of the non-rigidity of

a given point on the matrix W̃ can be given by how distant its trajectory is from the best rigid description

given by W̃
(r). Note that the number of point trajectories described by each matrix is the same and there

is a direct correspondence between them, as they refer to the same body. Based on this idea, we will

rearrange the data matrix defined in equation (2.1) as:

W̃ =


w̃T

11 w̃T
12 . . . w̃T

1P

w̃T
21 w̃T

22 . . . w̃T
2P

...
...

...

w̃T
F1 w̃T

F2 . . . w̃T
FP

 , (2.30)

where W̃ is an F × 3P matrix, with P is the number of feature points tracked over F frames by the

MOCAP system. The matrix corresponding to the best global rigid shape W̃
(r) will be arranged similarly

as in equation (2.30). The 3D trajectories of a generic point j are thus described in the F × 3 matrix W̃j

defined by:

W̃j =


w̃T

1j

w̃T
2j

...

w̃T
Fj

 , (2.31)
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with j = 1, . . . , P . We define W̃
(r)
j as the 3D trajectories of the same generic point j in the best global

rigid shape description. We can now define an error matrix Ej as:

Ej = W̃
(r)
j − W̃j , (2.32)

with Ej an F × 3 matrix and j = 1, . . . , P . As described above, this matrix indicates how distant the

rigid and non-rigid trajectories of a generic point j are. Thus, for deformable points, ||Ej || will be higher

than for rigid points. A weight matrix that assigns higher weights to rigid points and lower weights to

deformable points can now be defined as:

Cj = cov(Ej)−1, (2.33)

as deformable points are bound to originate higher covariance values. Given this weight matrix, a better

rigid description of the deformable body can be found by solving the least-squares problem given by:

arg min
Mi,sj

F∑
i=1

P∑
j=1

(w̃(r)
ij − Misj)T Cj (w̃(r)

ij − Misj). (2.34)

What we propose here is a two-step iterative algorithm that, from an initial estimation of the data for

the best rigid shape, will compute a better global rigid shape description based on equation (2.34). If

we have an estimation for W̃(r) the weight matrix Cj can be computed. However, neither W̃(r) nor Cj are

known. Thus, the registered measurement matrix W̃ will be used as an estimation of W̃(r). With this, we

intend to find the factors M and S that minimise the Frobenius distance of the measurement matrix to

the weighted rigid body description. We will now rewrite equation (2.34) as:

arg min
Mi,sj

F∑
i=1

P∑
j=1

(w̃ij − Misj)T Cj (w̃ij − Misj). (2.35)

Still equation (2.35) is not trivial to solve as it is a minimisation of two parameters. Let us assume

we also know an estimation of M. We can now find a solution for S by rearranging equation (2.35) as

(for more details see Appendix A):

sj = (
F∑

i=1

MT
i Cj Mi)−1

F∑
i=1

Miw̃ij . (2.36)

This equation computes S based only in matrix products and matrix inversions and so it is done with

ease.

On the other hand, if we assume S to be known , a similar solution can be found for M. Nonetheless,

we must first rearrange Mi into a 9-vector mi defined by:

mi =


r1i

r2i

r3i

 , (2.37)
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and also rearrange sj into a 3× 9 block diagonal matrix Sj defined by:

Sj =


sT
j

sT
j

sT
j

 . (2.38)

Based on equation (2.35) we can now compute each vector mi as (for more details see Appendix A):

mi = (
P∑

j=1

ST
j Cj Sj)−1

P∑
j=1

Sj w̃ij . (2.39)

Each 9-vector mi can now be rearranged into a 3 × 3 matrix Mi. However there is again no guarantee

that Mi will be a rotation matrix. We chose to project each known affine matrix Mi into its closest rotation

matrix. This can be done optimally by decomposing each matrix Mi using an SVD (Mi
SV D= U Σ VT ) and

imposing Σ = I3×3, where I3×3 is the identity matrix [41]. If we denote the projection by M̂i, it can be

defined as:

M̂i = U VT . (2.40)

Equations (2.36) and (2.39) naturally form an iterative method for the computation of M and S as the

inputs of one are the outputs of the other. All we need now is an initial estimate of W to compute the

weight matrix Cj , an initial estimate of M and S, and a stoppage criterion.

For the initial estimations of W, M and S we will use the aforementioned rigid body factorization

defined in Section 2.1. As this factorization gives us an approximation of a rigid body motion, it can be a

good initialization for this algorithm. For the stopping criterion, we have chosen to use the convergence

of the Frobenius norm of the global error matrix E defined by:

||E|| = ||[E1 E2 · · · EP ]|| . (2.41)

Finally the algorithm can be summarised into the following steps:

1. Initialization: Compute the rank−3 approximation of W and factorize into M and S using the method

described in Section 2.1.

2. With the current estimations of M and S compute the weight matrices Cj using equation (2.33).

3. Using the current estimation of M, compute S by using equation (2.36).

4. Based on the current estimation of S from Step 2, compute M by using equation (2.39).

5. Apply the orthogonality constrains to Mi defined in equation (2.40).

6. Repeat Steps 2 to 4 until convergence of the Frobenius norm of E is reached.
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2.3.2 Weighted factorization and translation

In Section 2.3.1 we defined a weighted algorithm to estimate a better rigid representation of the

global shape, based on the registered data. Still, if the deformation is strongly directional (e.g. muscu-

lar contraction) the rigid translation may be biased towards the deformation direction. Here we present

a new version of the weighted factorization algorithm summarised at the end of Section 2.3.1, that

incorporates an estimation for the translation. Since translation is not part of the global shape param-

eters, we must start to modify our previous algorithm in the computation of M. Based on equation (2.2)

we can update equation (2.37) to:

mi =



r1i

txi

r2i

tyi

r3i

tzi


, (2.42)

where mi is now a 12-vector; and update equation (2.38) to:

Sj =


sT
j 1

sT
j 1

sT
j 1

 , (2.43)

where Sj is now a 3 × 12 block diagonal matrix. Now we can update equation (2.39) to use the

unregistered data matrix W:

mi = (
P∑

j=1

ST
j Cj Sj)−1

P∑
j=1

Sj wij , (2.44)

where Sj is defined by equation (2.43) and mi defined by equation (2.42).

The estimation of the global shape parameters is still done by equation (2.36) using the registered

data matrix W̃. However, since we have defined a new way to compute the translation, this registration

is made by subtracting to every 3D point coordinates at each frame, not the mean of the point cloud,

but the new translational component ti = [ txi tyi tzi ]T computed in equation (2.44).

Summarising, the weighted algorithm to compute a better representation for the global shape pa-

rameters and estimate the rotations and translations of the motion can be described by the following

steps:

1. Initialization: Compute the initial estimations for M, S and t using the rigid body factorization

method described in 2.1.

2. Use the current estimation of t to register the data matrix W.
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3. With the current estimation of M and the registered matrix W̃ computed in Step 2, compute a new

estimation for S using equation (2.36)

4. Based on the estimation of S computed in Step 3, compute a new estimation of M and t based on

equation (2.44).

5. Repeat Steps 2 to 5 until convergence of the Frobenius norm of ε is achieved.

2.3.3 Weighted factorization with occlusion

When using MOCAP systems one of the problems that might occur is the occlusion of the feature

points i.e. in some of the frames there might not be any data available for some markers (and that is

why this problem is also named missing data). This occlusion occurs due to problems with the markers

(e.g. the marker detaching from the body being tracked), problems with the tracking system itself (e.g.

the body moving out of the range of the system) or when the marker is covered from the cameras by the

body in motion. When occlusion happens the measurement matrix will contain, in some frames, fewer

3D point coordinates. Thus the global properties of the system will be altered, causing the algorithm

to collapse. What we present here is an update of the algorithm that we began discussing in Section

2.3.1 and Section 2.3.2 to handle cases of occlusion. However we assume that we know exactly which

points are missing when it occurs.

Even though some points may be occluded in a given frame, equation (2.2) still holds true for the

points that are not occluded, as do all the rank considerations made in Section 2.1. Using these

considerations, the approach presented in the previous sections can be easily modified. If a given

feature point j was occluded at frame i, then the 3D coordinates wij will be missing. Since we do not

have any information about missing markers we simply ignore its contribution to the computations of M,

S and t, and use only the available information. Let us define a F × P binary matrix Z such that:

zij =

1, if wij is available.

0, if wij is occluded.
(2.45)

Now all we need to do is use Z to set to zero the contributions of the missing data. This can be done

by updating equations (2.44) and (2.36) as:

mi = (
P∑

j=1

zij S
T
j Cj Sj)−1

P∑
j=1

zij Sj wij ; (2.46)

sj = (
F∑

i=1

zij M
T
i Cj Mi)−1

F∑
i=1

zij Miw̃ij . (2.47)

When wij is missing, Ej can still be computed. However, entries corresponding to missing data will not

be used on the computations, making Cj independent of missing data.

From equation (2.46) we can see that if S is known then, even if occlusion occurs in some frames,
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mi can still be estimated. In a similar way sj is computed based on all the information available in Wi,

and thus it can also be estimated. Clearly, there is a limit on the amount of data that can be occluded

for the algorithm to work. However finding a theoretical limit is not trivial, being this usually done with

experimental results. The resulting algorithm has the same outline as the one described at the end of

Section 2.3.2, but with equations (2.44) and (2.36) being replaced respectively by (2.46) and (2.47).
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Chapter 3

Quadratic Model for Deformable

Bodies

The factorization methods studied on Chapter 2 are based on the assumption that we are dealing

with rigid bodies. When applied to deformable bodies, these algorithms make approximations to find

the best rigid body description. As mentioned in Chapter 1, one of the main issues regarding accurate

joint parameter estimation in humans is the soft-tissue artifact. At this level of analysis, bones can be

seen as rigid bodies when compared to soft-tissues. Thus, if we are able to exactly model non-rigid

bodies, we will be able to correctly separate the rigid contributions (skeleton) from the deforming one

(soft-tissue). Consequently, a more accurate estimation of the motion of the bones composing the

articulations will be possible, leading to a more accurate joint parameter estimation.

One of the most popular approaches when modelling deformable bodies is to approximate them as

a linear combination of different rigid basis shapes [42, 25]. However, deformations occurring on the

human body due to soft-tissue tend to have quadratic behaviour (e.g. muscle contractions), increasing

considerably the number of basis shapes required to accurately approximate the deformations. This

has a negative impact on computational costs, allowing us to use only a limited number of basis shapes,

and thus compromising accuracy. Moreover, due to the high number of parameters to estimate, it is

common to obtain various local minima when applying minimisation schemes to solve this problem,

thus decreasing accuracy.

If we are to deal with quadratic deformations, the most logical approach leads to use a quadratic

model for deformable bodies. Inspired by previous works on the field of computer graphics [10, 43], we

present a new quadratic model for non-rigid bodies using geometric constraints, built as an extension

to the factorization-based rigid body model as described in Section 2.1.
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3.1 Quadratic model formulation

Our model for deformable bodies expands the rigid body formulation defined by equation (2.3), to

a formulation that uses linear, quadratic and crossed-terms of the previous rigid shape matrix. Let us

define the new shape matrix as:

S =



x1 x2 . . . xP

y1 y2 . . . yP

z1 z2 . . . zP

x2
1 x2

2 . . . x2
P

y2
1 y2

2 . . . y2
P

z2
1 z2

2 . . . z2
P

x1y1 x2y2 . . . xP yP

y1z1 y2z2 . . . yP zP

z1x1 z2x2 . . . zPxP



=


S(Γ)

S(Ω)

S(Λ)

 , (3.1)

where S(Γ) is the 3×P linear shape matrix, S(Ω) the 3×P quadratic shape matrix and S(Λ) is the 3×P

cross-values shape matrix. Given this new structure of S, we introduce the motion matrix Mi defined by:

Mi = Ri

[
Γi Ωi Λi

]
, (3.2)

where Ri is a 3 × 3 rotation matrix, and Γi is a 3 × 3 transformation matrix associated with linear

deformations, Ωi is a 3× 3 transformation matrix associated with quadratic transformations and Λi is a

3×3 transformation associated with cross-values deformations. By modeling the rotations in a separate

matrix Ri, we are defining the deformation matrices in the local referential of the body. Using the same

formulation as in the model for rigid bodies, and stacking the equation for all the F frames, we can now

define:

W̃ =


R1

R2

. . .

RF




Γ1 Ω1 Λ1

Γ2 Ω2 Λ2

...
...

...

ΓF ΩF ΛF




S(Γ)

S(Ω)

S(Λ)

 = M S, (3.3)

where W̃i is the data matrix containing the 3D coordinates of the feature points, registered to the origin

of the global referential. Following similar considerations as done in Chapter 2, this rigid model is

described by a rank(W̃) ≤ 9 constraint.

This quadratic model is in fact an extension of the linear rigid body model defined in Section 2.1 to

deal with quadratic and cross-value terms, while keeping the same factorization into motion and shape

factors. Note that a rigid body is still easily expressed by this model if we make Γi = I3×3, Ωi = 03×3

and Λi = 03×3 for every frame i, where I3×3 is the 3× 3 identity matrix, and 03×3 is a 3× 3 zero matrix.

Accordingly, the rank constraints in this case will be still satisfied, giving rank(W̃) ≤ 3.
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By combining the new shape matrices with the associated transformation matrices, we are able

to model characteristic soft-tissue motions such as bending, bulging, jiggling or stretching. Detailed

description about the role of the different matrices will be addressed in the following sections. For

the sake of notation simplicity, we will only consider one frame of the motion, and the i index will be

dropped. However, results can be easily extended to a general case.

3.1.1 Linear deformation and shape matrices

Before we can analyse the role of the linear deformation matrix Γ, a few considerations about the

model must be done. Every full-rank 3 × 3 matrix can be expressed with a RQ decomposition, from

which results a rotation matrix R and an upper triangular matrix Ω. Since in our model rotations are

fully given by Ri, a RQ decomposition of [Γ Ω Λ] should not incorporate a rotation component i.e the

rotation matrix of that decomposition should be the 3× 3 identify matrix I3×3, otherwise we would have

an ambiguity in the optimization of these components. This implies that Γ must be an upper triangular

matrix. Thus, we can now define Γ as:

Γ =


Γ11 Γ12 Γ13

0 Γ22 Γ23

0 0 Γ33

 . (3.4)

In order to fully understand the role of Γ in the model, we applied different transformation matrices

to a previously built synthetic cubic object (see Figure 3.1). Due to the particular symmetry of the cube,

results drawn from analysing the effects of the transformation matrices in one of the coordinate axis is

easily extended to the other two coordinate axis.

For these synthetic tests we used R = I3×3, Ω = 03×3, Λ = 03×3, and S a 9×156 matrix representing

the quadratic formulation of the synthetic cubic object. Examples of these experiments can be seen in

Figure 3.2.
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Figure 3.1: Representation of the 3D cubic object used to test the quadratic model for non-rigid bodies.
Edges of the object were added to aid visualisation and they are not part of the computations.

From these experiments, we can conclude that the diagonal entries of the linear deformation matrix,
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Γ11, Γ22 and Γ33, are responsible for the linear expansion/compression of the object, in the direction of

the x-axis, y-axis and z-axis respectively (see Figure 3.2 on the left). The off-diagonal entries of Γ (Γ12,

Γ13 and Γ23) are responsible for pure shear deformations (see Figure 3.2 on the right). For instance, let

us consider a vector a initially parallel to the x-axis, and another vector b initially parallel to the y-axis,

and thus orthogonal to a. Γ12 is responsible for increasing or decreasing the angle between a and b,

without changing the orientation of a. Thus the vectors will no longer be orthogonal, and the object will

present a shear deformation. Analogous results can be drawn for the other entries of the matrix.
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Figure 3.2: On the left, an example of an extension motion on the cubic object caused by Γ11 = 1.5.
On the right, an example of the sheer deformation on the cubic object caused by Γ13 = 0.5. The edges
on the object were displayed to aid visualisation and they are not part of the computations.

3.1.2 Quadratic deformation and quadratic shape matrices

Following the same procedure as in Section 3.1.1, we examined the properties of the quadratic de-

formation and quadratic shape matrices by applying different transformations to the already mentioned

cubic object (see Figure 3.1). For this case we used R = I3×3, Γ = I3×3, ∆ = 03×3, and S as the 9× 156

shape matrix of the synthetic cube. Examples of the experiments can be seen in Figure 3.3 and Figure

3.4.
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Figure 3.3: On the left, an example of the deformation caused by a non-diagonal entry, with Ω31 = 0.5.
On the right, an example of the same type of deformation with Ω32 = 0.5.

As we can see from Figure 3.3, there are two different bending/bulging possible deformations per
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Figure 3.4: On the left, an example of a extension motion on the cubic object caused by Ω11 = 1. On
the right, a side view of the same example. Note that this deformation has problems as inner planes in
the initial shape expand to be outter planes in the final shape.

coordinate axis. These deformations correspond to the off-diagonal entries of Ω (Ω12, Ω13, Ω21, Ω23,

Ω31 and Ω32) and they can be associated, for instance, to muscular contractions, which are one of the

main sources of soft-tissue artifacts. Modelling these deformations is thus very important when dealing

with this problem.

However, not every deformation represented by this matrix has a physical counterpart in this particu-

lar case. The three diagonal entries of Ω ( Ω11, Ω22 and Ω33) represent a quadratic extension/contraction

along the x-axis, y-axis and z-axis respectively. Still, not only has extension and contraction been (lin-

early) modelled by Γ, but also this transformation has the problem of plane interpenetration i.e. due to

its quadratic nature, the relative order among the planes might change during the deformation. This

is clearly visible in Figure 3.4, where one of the outermost planes in the initial configuration, where

the edge of the cubic object is represented, is now one of the inner planes. Such deformations do not

happen when modelling the human body and so, we will not allow these deformations on the model.

Finally, we define Ω as:

Ω =


0 Ω12 Ω13

Ω21 0 Ω23

Ω31 Ω32 0

 . (3.5)

3.1.3 Cross-terms deformation and cross-terms shape matrices

To evaluate the effects of the cross-terms deformation matrix, following the same procedure used

in the previous sections. In this case, we will use R = I3×3, Γ = I3×3, Ω = 03×3 and S, as before, is

a 9 × 156 matrix representing the quadratic formulation of the synthetic cubic object (see Figure 3.1).

Examples of the experiments can be found in Figure 3.5 and Figure 3.6.

With this transformation matrix two different kinds of deformations are observed. One of the defor-

mations is characterized by a lateral contraction in one side of the object, while on the opposite side

a lateral extension is observed. As we can see from Figure 3.5, this deformation has two modes per

axis, and thus we have six matrix entries which gives such deformations: Λ11, Λ22, Λ33, Λ13, Λ21 and
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Figure 3.5: Examples of the lateral contraction/extension deformation observed with the cross-values
deformation matrix. The deformation on the left corresponds to Λ11 = 0.5, while the one on the right
corresponds to Λ32 = 0.5.

Λ32.

The other kind of deformation observed can be described as twisting the object around each of

the coordinate axis (see Figure 3.6). The matrix entries responsible for this kind of motion are the

remaining three entries: Λ12, Λ23 and Λ31.
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Figure 3.6: Examples of the twisting deformation observed with the cross-values deformation matrix.
The deformation on the left corresponds to Λ12 = 0.5, while the one on the right corresponds to
Λ31 = 0.5.

On the other hand, the twisting deformation mode is not expected to happen when modelling human

body parts, and so it will not be allowed to vary. Summarising, we define the cross-value deformations

matrix as:

Λ =


Λ11 0 Λ13

Λ21 Λ22 0

0 Λ32 Λ33

 . (3.6)

3.1.4 Model bounds

The deformations allowed by this model have physical meaning only up to a certain degree. For

instance, we do not expect a body segment to expand indefinitely, or to contract until all the points
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collapse on a plane. Similar issues are present in all the deformation modes allowed by the model.

Additionally, when applying the model without bounds for these values, even thought the motion recon-

struction is accurate, the rigid component of the shape factor will be different from the shape present on

the motion (see Figure 3.7). This happens because if any deformation is allowed, the model will gen-

erate unrealistic deformations, to which will correspond unrealistic shape factors. Therefore, we must

define an upper and lower bound to the entries of the transformation matrices as to prevent meaning-

less deformations. On the other hand, we do not want the model to become overconstrained, as this

would prevent correct modelling of the soft-tissues. Thus, based solely on empirical evaluation of the

effects of the bounds on the transformation matrices, we defined the upper and lower bounds as a ±0.5

from the value of the parameters on the rigid body case. Finally, the upper and lower bounds can be

formed as:

UBΓ =

1.5, for diagonal entries.

0.5, for off-diagonal entries.
;

LBΓ =

0.5, for diagonal entries.

−0.5, for off-diagonal entries.
;

UBΩ = 0.5;

LBΩ = −0.5;

UBΛ = 0.5;

LBΛ = −0.5;

where LB stands for lower bound, and UB stands for upper bound.

As a further observation, biological soft-tissues are generally viewed as visco-hyperelastic, incom-

pressible materials [44]. Thus, imposing a volume conservation constraint on our model is of the most

importance, as it has a strong physical base. This can be done by requiring the determinant of the

Linear deformation matrix to be unitary [44, 43]. This constraint can be written analytically by forcing

the following relation:

Γ11Γ22Γ33 = 1

.
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Ground truth Reconstruction without bounds Reconstruction with bounds

Figure 3.7: On the left, an example of the shape observed on the measurement matrix. On the middle,
the rigid component of the shape matrix when using upper and lower bounds on the model. On the
right, the rigid component of the shape matrix if no bounds on the deformation are used. It is clear
from these images that if no bounds are applied, the rigid shape recovered will be different from the
observed shape during the motion.

3.2 Non-linear optimization with a quadratic model

Implementing an iterative method, similar to the one presented in Section 2.3.1, to solve the fac-

torization problem with the Quadratic model proved not to be a straight forward task. The reason is

mainly because the overall quadratic model is highly non-linear both in the motion and shape compo-

nents. Thus, adopting a linear alternation scheme as in Section 2.3.1 would lead to a minimisation in

which the cost functions are still non-linear at each step. For instance, in the estimation of the motion

parameters we have a rotation matrix which multiplies the quadratic deformation parameters. Similarly,

in the shape components, we have the squared and cross-product version of the 3D coordinates. For

these reasons, we decided to directly adopt a non-linear optimization approach, initialized by the rigid-

body motion estimated by our weighted factorization approach described in Section 2.3. We defined a

non-rigid cost function which will then be optimized using a Levenberg-Marquardt iterative optimization

scheme, generically called bundle-adjustment (BA).

3.2.1 The non-rigid cost function

Our goal is to find the best representation of the data matrix W by using the quadratic model de-

scribed in Section 3.1. When reconstructing the data matrix W based on a model, there will always be

some residual error associated to it caused, for instance, by the noise in the data, computational errors

or model inaccuracies. The 3-vector of the 3D coordinates estimated by our model for point j at frame

i can thus be represented as:
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w̃(rec)
ij = Misj = Ri [Γi Ωi Λi] sj ; (3.7)

while the residual error of reconstruction can be defined as:

eij = w̃ij − w̃(rec)
ij , (3.8)

where w̃ij is the data acquired by the MOCAP system.

The best fit of the quadratic model to the MOCAP data is then found by minimizing the norm of the

residual errors such that:

arg min
Ri,Γi,Ωi,Λi,sj

F,P∑
i,j

||eij ||2 = arg min
Ri,Γi,Ωi,Λi,sj

F,P∑
i,j

||wij − w̃ij ||2 . (3.9)

However this sum of non-linear cost function has two major disadvantages. The number of param-

eters to be estimated rises considerably with the complexity of the object to be modelled, making the

computational cost too big for this method to be feasible. Also, the combination of several parameters

can create multiple local minima, resulting in difficult convergence to the global minimum. To solve this

problem, we propose an optimization procedure that takes advantage of the particular properties of

this problem.

3.2.2 The bundle-adjustment minimisation approach

BA refers to a combination of techniques which sum up to an efficient scheme for minimisation

(i.e. Levenberg-Marquardt) and computational tools which lower the computational requirements of the

method. Levenberg-Marquardt methods use a combination of Gauss-Newton and gradient descent

minimisation schemes, alternating from one to the other whenever the conditions are favourable and

they have been extensively tested in may engineering applications such as photogrammetry [45] and

computer vision [46]. However, the computation load is increasing dramatically when dealing with big

parameter space such as the one given by the quadratic model. The major contribution to the com-

putational burden of these second-order algorithms is represented by the computation of the inverse

matrix of the Hessian of the cost function, in every iteration of the Gauss-Newton descent step.

Let us define a N -vector Θ containing all the parameters to be estimated as:

Θ = [ΘR1 , . . . ,ΘRF
,ΘΓ1 , . . . ,ΘΓF

,ΘΩ1 , . . . ,ΘΩF
,ΘΛ1 , . . . ,ΘΛF

,Θs1 , . . . ,ΘsP
]T , (3.10)

where ΘRi
, ΘΓi

, ΘΩi
, ΘΛi

and Θsj
represent respectively the parameters for the rotation, linear de-

formations, quadratic deformations, cross-term deformations and shape matrix parameters for all the

frames and points. Based on these definitions, the cost function K can be defined as:
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K(Θ) =
F,P∑
i,j

||eij ||2 . (3.11)

The Gauss-Newton minimisation approach is an iterative algorithm where at each step t an update

∆t is added to the previous solution:

Θt+1 = Θt + ∆t, (3.12)

in such a way it decreases the sum of the residual errors in K. Let us define a 3FP -vector e containing

all the residuals for each frame i and point j such that e =
[
eT

11, . . . , e
T
FP

]T . Dropping the index t for

the sake of notation simplicity, if we assume local linearities in the cost function, we can now expand

equation (3.12) as a second order Taylor series as:

K(Θ + ∆) ≈ K(Θ) + gT ∆ +
1
2

∆T H∆, (3.13)

where the N -vector g = JT e is the gradient vector, with J =
∂e
∂∆

being the 3FP × N jacobian matrix

of the model parameters, and H being the N × N Hessian matrix of the cost function, which can be

approximated as H = JT J (for more details see [46] about the Gauss-Newton approximation of the

Hessian matrix).

The increment ∆ is found by computing
∂q

∂∆
= 0, where q = gT ∆ +

1
2

∆T H∆. Finally, the Gauss-

Newton descent step can be defined as:

H∆ = −g. (3.14)

The Levenberg-Marquardt optimization method differs from the simple Gauss-Newton method as it

introduces a damping term to equation (3.14), resulting in:

(H + λIN×N ) ∆ = −g, (3.15)

where IN×N is the N ×N identity matrix. This additional damping term allows controlling the algorithm

convergence in order to switch back and forth from a Gradient Descent to Gauss-Newton methods, in

order to better fit the problem conditions. This also guarantees numeric stability by forcing H + λIN×N

to be a full-rank matrix, and thus invertible.

Solving the set of equations defined by equation (3.15) is problem of complexity O(N3) and has to

be done at every iteration, making the computational cost of this problem too high when the number of

parameters increase. Still, we can use the properties of the factorization problem to find more efficient

ways to deal with this problem. If we consider the motion and shape parameters (Ri, Γi, Ωi, Λi), they are

completely independent among each other on every frame. Similarly, the P shape parameters sj are

independent among each other. Thus the Jacobian matrix J will have a very sparse structure.

Since the Hessian matrix H is computed based on this Jacobian, it will also have a sparse structure.
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By using standard approaches for sparse matrix computation, the complexity of the problem of inverting

H can be reduced [47, 48]. With this, applying bundle-adjustment to the non-rigid body factorization

becomes feasible even for a large number of parameters.
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Chapter 4

MATLAB Analysis Tool

For segmenting the set of points and visualize the results, we developed two MATLAB-based soft-

ware tools. We emphasise that it is not our goal to create a very sophisticated software for extensive

manipulation of the data. Instead our goal is to create a simple software tool that allows an easy manual

segmentation of the data to use in our algorithms. Although numeric information is very important to

assess the validity of the algorithm, the ability to visualise the captured data and the generated model

are essential to fully understand the capabilities of these algorithms. Thus we also provide a software

tool that allows interactive visualisation of the data.

4.1 Segmentation software tool

The general layout of the segmentation software tool can be seen in Figure 4.1.

Figure 4.1: General layout of the Segmentation Tool. The plot window is highlighted in black. The
segment editor options are highlighted in red. The animation player options are highlighted in blue.
The camera options are highlighted in green. Highlighted in orange is the marker selection option

.
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The goal of this software tool is to allow the user to create as many segments as needed, and to

manually select the markers that belong to each one of them. The 3D coordinates of the markers,

provided by the MOCAP system, are displayed on the plot window as blue circles (see Figure 4.1,

highlighted in black). The software tool has a player-like environment allowing the user to visualise the

data frame by frame or play it in video mode (see Figure 4.1, highlighted in blue). To take full advantage

of the 3D data, it is also possible to change the viewpoint, zoom in or out and panning the image, even

when playing in video mode (see Figure 4.1, highlighted in green).

Segments are defined by a name and a color. When adding a segment to the segment list (see

Figure 4.1 highlighted in red), an additional window appears to define these properties. An example of

such a window can be seen in Figure 4.2. The color assigned to the segment is chosen by defining an

RGB code. The color defined by the current RGB code is also displayed on the window (see Figure 4.1

highlighted in orange). Segments can be edited or deleted whenever the player is paused or stopped.

Figure 4.2: Dialog for defining the properties of the segments.

Assigning markers to a segment is done by using the Select Point tool (see Figure 4.1, highlighted

in orange). Clicking on a marker will then assign it to the segment highlighted on the list, while its color

on the animation will change to the color defined for the segment. Examples of selected markers can

be seen in Figure 4.1, represented by markers in three different colors, belonging to the segments for

the hand, forearm and upper arm. Clicking on a selected marker will remove it from the previously

assigned segment. This procedure is not available in video mode, it must be done while the player is

paused or stopped.

4.2 Visualization software tool

The visualization software tool has a similar appearance to the segmentation software tool de-

scribed above. A general layout of the software tool can be seen in Figure 4.3. This tool uses the same

player-like environment to display an animation of the output of the MOCAP systems and the data

resulting from our algorithms (see Figure 4.3, highlighted in black). The options for zooming, panning

and rotating the images are also available (see Figure 4.3, highlighted in blue). However the purpose
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of this tool is to visualize the different outputs from our algorithms, and so the functionalities available

are quite different.

Figure 4.3: General layout of the Visualization Tool. The plot window is highlighted in black. The
animation player options are highlighted in blue. The camera options are highlighted in green. The
check box option for exporting the animation as a video file is highlighted in orange.

The tool allows us to visualize two data matrices simultaneously. This option was created in order

to visually compare the accuracy of the reconstructions resulting from our algorithms. In this mode,

one of the data sets is displayed as blue circles while the other is displayed as red asterisks ( see

Figure 4.4).

Figure 4.4: Example of the Visualization Tool displaying two shapes in motion at the same time. One
of the shapes is displayed using blue circles and the other is displayed as red asterisks.

For a better perception of the results for the joint parameters, this tool can also display representa-

tions of the reconstructed joints. The joint centres recovered for the universal joint are displayed as a

combination of a red circle and a red asterisk. This symbol is also displayed larger then circles used

for the markers, as to stand out in the point clouds (see Figure 4.5). For the hinge joints, we represent
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the axis of rotation using a green line built using equation (2.29) (see Figure 4.6).

Figure 4.5: Example of the Visualization Tool displaying a universal joint. The markers of the two
bodies are displayed as blue circles while the joint centre is displayed as a red circle combined with a
red asterisk.

There is also an option to export the animation to a video file (see Figure 4.3). However, when doing

so, the animation has to played from beginning to end, without manipulating the playback or camera

controls.

Figure 4.6: Example of the Visualization Tool displaying a hinge joint. The markers of the two bodies
are displayed as blue circles while the joint axis is displayed as a green line.
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Chapter 5

Experimental Results

The algorithms studied in Chapter 2 and Chapter 3 were implemented in MATLAB, a high level

language developed for numerical computations, matrix operations and graphic visualisation.

For the experimental validation of our algorithms, we generated synthetic data specifically for that

task. As determining a joint’s centre or axis on a human subject is not trivial, the synthetic data is

able to provide us with easily accessible ground truth data for our experiments. Afterwards, we applied

our algorithms to real MOCAP output data taken from the database of the Graphic Lab of Carnegie-

Mellon University (http://mocap.cs.cmu.edu/) and also MOCAP data acquired at the Augmented Human

Interaction Laboratory of the Department of Computer Science of Queen Mary University of London.

In both cases the data was captured using a VICON commercial MOCAP system. VICON is an active

optical system that works with infrared light. The light emitted by the system is then reflected on the

markers, and captured by infrared sensors. With this information the position of the markers can be

easily computed.

Since we do not know the ground truth measurements for these cases, we present the resulting

animation in order to have a qualitative evaluation of the joint properties. We chose not only move-

ments that are able to exemplify each of the joint types used to model the articulations, but also very

common movements, mainly from sports, that would give real-life examples of potential applications

of these algorithms. Notice that by using different databases we can show that these algorithms do

not depend on the MOCAP system’s setup. Since the available data is not segmented by default, for

the experimentation the data was hand segmented and visualized using the MATLAB software tools

presented on Chapter 4.

5.1 Weighted factorization

The weighted factorization algorithm is a focal step in the new proposed approach, as it reduces

noise it and estimates a more accurate rigid shape representation. To test its performance, we built a

synthetic test representing a cubic object, of side 2 units, containing 26 feature points and performing
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random motions on a scene. We tested the algorithm with different levels of additive white Gaussian

noise (AWGN), and later performed a statistical analysis of the accuracy of the reconstruction. Finally,

we applied the algorithm to real data obtained by a Vicon MOCAP.

5.1.1 Performance measurements

The cubic object used in the synthetic data is represented in Figure 5.1. Edges of the object are

displayed just to aid visualisation and are not part of the computations. The synthetic feature points

are represented in red. Based on this object we built several random motions that were used as a test

battery for our algorithm.
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Figure 5.1: MATLAB plots of the cubic object used for the synthetic tests. The synthetic feature points
are represented as red dots. The edges are shown to aid visualisation and they are not included in
computations.

Performances were measured based not only on the accuracy of the reconstruction of the shape

matrix, but also on the overall result on the data matrix. However, we cannot make a straight forward

comparison between the ground truth shape and the reconstructed shape. As we saw in Chapter 2,

the factorization problem has an ambiguity in the solution. The obtained solution is always valid up to

an unknown rotation RP since:

W = MS = MRP RT
P S = M̃S̃. (5.1)

In practice this is not a problem as there is no such thing as a real shape matrix S. However,

when we want to compare ground truth data to reconstructed data, the ground truth shape and the

reconstructed shape have to be previously registered to avoid this ambiguity. This is done by performing

a Procrustes analysis on the data [41]. Let us define S(gt) and S(rec) as respectively the ground truth and

reconstructed shape matrices. Registering the shape matrices using the Procrustes analysis consists

of solving the least-squares problem defined by:

arg min
R(P )

∣∣∣∣∣∣S(rec) − RP S(gt)
∣∣∣∣∣∣ , (5.2)

with RP constrained to be a rotation matrix (for more details see Appendix B).

Another factor that prevents straight forward comparison between S(gt) and S(rec) is the scale of the

objects. This difference may result from the noisy data provided as an input. To solve that, let us define
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lgt as the length of the edge of the ground truth cubic object. This value is a useful parameter to use

with cubic objects as all the edges have equal length. On the other hand, the reconstructed object

might not be exactly cubic and so the edges cannot be assumed to be equal. Let us define lr as the

mean value of the length of all the edges of the reconstructed object. The scaling factor can now be

defined as:

ls =
lgt

lr
. (5.3)

Let us also define a residual error matrix E(S) as:

E(S) = S(gt) − R(P ) S(rec). (5.4)

This matrix represents the differences between the parameters of the ground truth and reconstructed

shape matrices once the rotation ambiguity has been removed. We can now use equations (5.3) and

(5.4) to define the measurement of the root means squared (RMS) error for the global shape matrix as:

ε(S) =

√√√√ 1
P × ls

P∑
j=1

∣∣∣∣∣∣E(S)
j

∣∣∣∣∣∣2, (5.5)

where
∣∣∣∣∣∣E(S)

j

∣∣∣∣∣∣ represents the error on the global shape for point j. The factor
1
P

is a normalising factor

for the number of points in the shape.

However, this error measurement is still system specific. In order to have system independent error

measurement, some kind of normalisation must be done. For this purpose, we chose to normalise the

RMS error by the norm of the ground truth shape matrix. We finally define the error measurement as:

ε(S)
n =

ε(S)

||S(gt)||
. (5.6)

We defined similarly the error for the data matrix as:

E(W ) = W(gt) − W(rec), (5.7)

with W(gt) the ground truth data matrix and W(rec) the reconstructed data matrix. Note that this matrix

is different from the error matrix E presented in Section 2.3.1 as that matrix was built using a different

arrangement for the 3D coordinates in the data matrix.

There is no need for a Procrustes analysis in this case, as there is no ambiguity in recovering W(rec).

The reconstructed matrix is the best approximation the algorithm can return for W(gt). However, in this

case, we must not only normalise for the number of feature points P , but also for the number of frames

F . The RMS error for the global data matrix can thus be defined as:

ε(W ) =

√√√√ 1
P × F

F∑
i=1

P∑
j=1

∣∣∣∣∣∣E(W )
ij

∣∣∣∣∣∣2, (5.8)
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where
∣∣∣∣∣∣E(W )

ij

∣∣∣∣∣∣ is the residual error for the feature point j at frame i in the global data matrix. Again,

the RMS error is normalised by ||S(gt)||:

ε(W )
n =

ε(W )

||S(gt)||
. (5.9)

5.1.2 Weighted factorization with additive Gaussian noise

Now that we have defined how to compute the error for the algorithm, we can carry out an analysis

of its performance. Using the test battery we created, we tested the accuracy of retrieving the shape

matrix and reconstructing the original motion, defined respectively by equations (5.6) and (5.9), on 1000

completely random motions using 7 different levels of AWGN. The noise levels were defined based on

the variance of the Gaussian distribution, and had the following values: σ2 = 0, 0.01, 0.05, 0.1, 0.2,

0.4, and 0.6. In order to avoid the algorithm being stuck on a local minima, we limited the iterations

to 500 on every test. To compare the performance, we also submitted the non-weighted factorization

approach presented in Section 2.1 to the same tests. The statistical analysis of the data is represented

by box plots (e.g. Figure 5.2). A box plot consists of a blue box for each test condition (in this case,

noise level), delimited by the first quartile (χ25) at the bottom, and the third quartile (χ75) at the top. The

red line in the middle of the box represents the median (χ50) of the samples. The range of the data

is determined by the interquartile range (IQR) defined by IQR = χ75 − χ25. All data that lies higher

then χ75 + 1.5 × IQR, or lower then χ25 − 1.5 × IQR is considered an outlier. When existent, these

are represented by a red plus sign. Black dashed lines extend from the top and bottom of the blue box

until the last non-outlier value. The box plot analysis of the error for the shape matrix reconstruction is

represented in Figure 5.2. The mean error values versus the noise levels for the shape and data matrix

reconstructions can be found in Table 5.1.
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Figure 5.2: On the left, the box plot for the analysis of the shape matrix reconstruction using the simple
factorization method. On the right the box plot for the analysis of the shape matrix reconstruction using
the weighted factorization method.

Figure 5.2 and on Table 5.1 show that while both algorithms, weighted and non-weighted, work

perfectly in the recovery of the shape matrix in the ideal case (σ2 = 0), their performances are different
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Table 5.1: Mean Error values for Shape and Data Matrix reconstruction using Simple and Weighted
Factorization algorithms

Simple Factorization Weighted Factorization
σ2 ε

(S)
n (%) ε

(W )
n (%) ε

(S)
n (%) ε

(W )
n (%)

0 2.24× 10−13 1.31× 10−4 5.16× 10−14 3.16× 10−15

0.01 0.017 0.00057 0.027 0.00040
0.05 0.090 0.028 0.120 0.020
0.1 0.197 0.056 0.217 0.031
0.2 0.491 0.112 0.387 0.076
0.4 1.54 0.229 0.738 0.159
0.6 3.23 0.333 1.13 0.232

when the data is noisy. When the variance of the AWGN is small (σ2 = 0.01 and 0.05) , the non-weighted

algorithm performs better then our weighted algorithm. The number of outliers is also higher on the

weighted algorithm, suggesting that in those cases the algorithm may be trapped in local minima. Still,

the performance of our weighted algorithm matches the non-weighted algorithm approximately when

σ2 = 0.1, surpassing it for higher noise levels (σ2 = 0.2, 0.4 and 0.6), both in median error and in

number of outliers.

The box plot analysis of the reconstructed data matrix is presented in Figure 5.3. In this case, for

small levels of noise (σ2 = 0, 0.01, 0.05 and 0.1) the weighted and non-weighted algorithms have similar

performances. Still, for higher noise levels (σ2 = 0.2, 0.4 and 0.6) the weighted algorithm has, again, a

better performance.

The difference between the performances with noisy data is not as significant for the data matrix as

it is for the shape matrix case. This can be explained by the fact that, when applying the orthogonality

constraints to the motion matrix, the simple factorization algorithm finds a global solution for M (see

equation 2.13). When data is noisy, it is likely that in many frames Mi is not exactly a rotation matrix,

thus allowing affine transformations of the shape matrix. Without enough constraints on the motion

matrix, the shape matrix will not be accurately estimated. On the other hand, the weighted factorization

algorithm requires every matrix Mi to be a rotation matrix, at the expense of disregarding the continuity

of the motion. Still, when higher levels of noise are used, this algorithm can not only provide a more

accurate estimation of W, but also a more accurate estimation of S.

Since we are aiming to deal with deformable objects, the weighted factorization algorithm seems to

be more suited for recovering a rigid structure based on the motion of a deformable object. Note that

recovering accurate rigid structure and motion matrices is important for the initialization of our quadratic

model for non-rigid bodies, presented in Chapter 3.

5.1.3 Weighted factorization with occlusion

Another feature of our Weighted Factorization algorithm as presented in Section 2.3.3 is the ability

to handle occlusion. Still, it is important to quantify the amount of missing data the algorithm can
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Figure 5.3: On the left, the box plot for the analysis of the data matrix reconstruction using the simple
factorization method. On the right the box plot for the analysis of the data matrix reconstruction using
the weighted factorization method.

handle in various conditions. For this purpose we generated the Z matrix defined in Section 2.3.3 to

have different percentages of missing entries: 30%, 40%, 50% and 60%. Since these missing entries

are assigned randomly, for each different percentage we applied the algorithm to the 100 random rigid

body motions existent in our test battery. To test the robustness of the algorithm, we tested each case

with 7 different levels of AWGN, defined by the value of its variance: σ2 = 0, 0.01, 0.05, 0.2, 0.4 and 0.6.

Performance was again measured using the same normalised RMS error defined in equation (5.6).

In Figure 5.4 we present the error analysis for the shape matrix reconstruction with occlusion. Data

regarding the mean error value for each noise level and missing data percentage, as well as the number

of non-convergent cases, given by NZ , can be seen in Table 5.2.

Table 5.2: Mean error for the shape matrix S with different levels of noise and missing data.

p = 0.3 p = 0.4 p = 0.5 p = 0.6
σ2 ε

(S)
n NZ ε

(S)
n NZ ε

(S)
n NZ ε

(S)
n NZ

0 5.04× 10−14 0 4.62× 10−14 0 4.35× 10−14 3 0.350 53
0.01 0.0398 0 0.0382 0 0.0410 0 0.0748 34
0.05 0.142 0 0.158 0 0.176 0 0.218 41
0.1 0.254 0 0.273 0 0.301 1 0.381 45
0.2 0.469 0 0.502 0 0.554 0 0.646 53
0.4 0.897 0 0.968 0 1.05 1 1.24 48
0.6 1.38 0 1.55 0 1.67 4 1.89 47

From these results we can see that our algorithm is able to successfully deal with 50% of missing

data. Still, due to the randomness of the occlusion phenomenon, it is possible that the algorithm will not

converge even when only 30% of the data is missing. This can happen if, for instance, missing data is

particularly strong on a given frame, making impossible to solve the system of equations for that case.

With the levels of occlusion tested, the algorithm only failed to converge in 9 cases when occlusion

was at most 50%, all of them when using the highest level of noise. When dealing with 60% of missing

data, approximately half of the tests will fail. Thus we consider our algorithm cannot handle 60% of

missing data. The true limit value will lie between 50% and 60%. Still, as no more tests were done and
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Figure 5.4: Box plot analysis of the reconstruction of the shape matrix, with 30%, 40%, 50% and 60%
of occlusion.

also to have a safety margin, we will consider our algorithm to be limited to 50% missing data. When

comparing data with occlusion and data without occlusion (see Section 5.1.2) we can see that when

no noise is added, even with 50% of occlusion, we have a very a similar performance. However, as

the error level increases, the reconstruction based on missing data will be getting, as expected, slightly

worse. Within the same level of noise, the performance also decreases when more data is occluded.

5.2 Universal joint

Following a similar approach as used in Section 5.1 we first tested our universal joint factorization

algorithm using synthetic data. This data simulated two cubic rigid objects, composed of 26 feature

points each, linked by an universal joint. With these settings a test battery of 1000 completely random

motions over 500 frames of that object was created. The cubic rigid objects used where the same

defined in Section 5.1. The universal joint setup can be seen in Figure 5.5.

To test the robustness of the universal joint factorization algorithm, we ran the test battery with

different levels of AWGN.

5.2.1 Performance measurements

To be able to compare performances we must first define an error measurement for the algorithm.

When using the universal joint factorization defined in Section 5.2, d(1) and d(2) are the parameters
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Figure 5.5: A MATLAB plot of the synthetic setup of the universal joint. The first body’s feature points
are represented as blue dots. The second body’s feature points are represented as red dots. The
object centroids are represented as green dots. The vectors d(1) and d(2) are represented as a black
line. The joint centre is represented as a black dot. The edges of the objects represented as black lines
were added to facilitate visualisation and they are not part of the computations

that define the joint. These vectors are computed based on the shape and motion parameters of the

two bodies, thus their estimate reflects the accuracy of the algorithm on the overall joint. Since the joint

axis was defined in equation 2.29 based on d(1), we will focus on this vector to estimate the accuracy

of the algorithm. We already know that d(1) must fulfil the motion equations of the first body. Thus it is

possible to define a data matrix containing the 3D coordinates for the joint centre over all the frames

as:

W(JC) = M(1)d(1) + t(1). (5.10)

Let W(JCgt) be the data matrix for the joint centre in the ground truth data, and W(JCr) be the data matrix

for the joint centre reconstructed by the factorisation algorithm. We can now define an error matrix for

the universal joint as:

E(JC) = W (JCgt) −W (JCr). (5.11)

Using a similar formulation as the one used in Section 5.1 for the weighted factorization algorithm, we

can now define the RMS error for the universal joint algorithm as:

ε(U) =

√√√√ 1
F

F∑
i=1

∣∣∣∣∣∣E(JC)
i

∣∣∣∣∣∣2, (5.12)

where
∣∣∣∣∣∣E(JC)

i

∣∣∣∣∣∣ is the residual error for the joint centre at frame i. Since we are only dealing with the

coordinates of the joint centre, we only need to normalise regarding the number of frames F .

A system independent value can be found by normalising ε(U) with the average ”size” of the objects.

In this case we will normalise with ||S(gt)||, where S(gt)|| is the ground truth shape matrix of the cube

used on the data, as both objects are equal. Thus, we define the normalised error measurement as:
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ε(U)
n =

ε(U)

||S(gt)||
(5.13)

5.2.2 Universal joint factorization with additive Gaussian noise

By using equation 5.13 we can now carry out a statistical analysis of the performance of the algo-

rithm. This is done by running the universal joint factorization algorithm to the test battery composed

of 1000 completely random universal joint motions using 7 different levels of AWGN. Again, the noise

levels are defined based on the variance of the Gaussian distribution, with values: σ2 = 0, 0.01, 0.05,

0.1, 0.2, 0.4 and 0.6. The statistical results are represented by a box plot on Figure 5.6. The mean value

of the RMS error versus the noise level is presented in Table 5.3.
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Figure 5.6: Box plot of the error analysis for the Universal Joint centre, with 7 different levels of noise.

Based on Figure 5.6, we can conclude that while the IQR is small for all the cases,indicating a

good reliability of the results, there is a relatively high number of outliers. This number is specially high

when dealing with higher noise levels. As we are estimating a single point in the 3D space, it seems

plausible that higher noise values can have a bigger impact on the computations. In fact, when dealing

with higher noise values, the error can even reach 30%, which is unsatisfactory. Still, such error values

are not commonly encountered when dealing with real data, being the values presented for realistic

errors satisfactory.

5.2.3 Universal joint factorization with real data

To demonstrate the application on real data, we applied the universal factorization algorithm to data

captured in the Augmented Human Interaction Laboratory of the Department of Computer Science

of Queen Mary University of London. The data analysed in this section consists of two bodies, a
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Table 5.3: Mean Error for the Universal Joint Case vs. Noise Level

σ2 ε
(U)
n (%)

0 7, 47× 10−13

0.01 0.50
0.05 2.50
0.1 4.98
0.2 9.90
0.4 20.0
0.6 30.0

human torso and head, performing a random motion. Examples of the real video stream, and the

reconstruction made with our algorithm is shown in Figure 5.7. On the reconstruction, the torso markers

are represented as blue circles, the head markers as red circles, and the joint centre as the large red

circle with lines.
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Figure 5.7: On top, sample frames of the real sequence. On the bottom, the corresponding frames of
the reconstructed motion. The points of the torso are represented in blue circles, the points of the head
as read circles and the joint centre represented as the large red circle with lines.

Even though in the neck there exists a much more complex set of articulations, in this case a

universal joint model seems to be a good model. While it may not be detailed enough for clinical

applications, in a gross analysis a universal joint model for the neck provides a good example of the

applications of these algorithms, as it is clearly capable of determining what we would expect to be the

joint centre.

5.3 Hinge joint

Using the same approach as in sections 5.1 and 5.2, we first measure the performance of the

algorithm using synthetic data. In this case we simulated a book-like scene, composed of two paral-

lelepipedic objects, with 90 feature points each, linked by a hinge joint. With this setup, we created 1000
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completely random motions, with 500 frames each. Each object has 90 feature points. This synthetic

hinge joint used is represented in Figure 5.8.

Figure 5.8: A MATLAB plot of the synthetic setup of the hinge joint. The first body’s feature points are
represented as blue dots. The second body’s feature points are represented as red dots; the object
centroids are represented as gray dots; the vectors d(1) and d(2) are represented as black lines; the
joint centre is represented as a black dot and the joint axis is represented as a green line. The edges
of the objects represented as black lines were added to facilitate visualisation and they are not part of
the computations

5.3.1 Performance measurement

To measure the performance of the algorithm we will, once again, rely on the computation of the

joint parameters for they depend on all the other parameters of the motion. In this particular case, we

want to estimate an axis of rotation, therefore a meaningful measurement for the error is the angle

between the ground truth axis and the estimated axis. In Section 2.2.2 we defined the axis of rotation

as coincident with the x-axis on the local referential of the first body. Let us define a(gt)
i as the unitary

vector that represents the axis of rotation, in the ground truth data, at frame i. Since in the local

referential of the first body the rotation axis is coincident with the x-axis, we can define a(gt)
i as:

a(gt)
i = R

(gt1)
i [1 0 0]T , (5.14)

where R
(gt1)
i is the global rotation matrix in frame i for the first body. We can similarly define a(rec)

i as

the hinge joint axis for the reconstructed case, with a(rec)
i given by:

a(rec)
i = R

(r1)
i [1 0 0]T , (5.15)

where R
(r1)
i is the global rotation matrix in frame i for the first body.
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Since we defined a(gt)
i and a(rec)

i as unitary vectors, the angle between the vectors at frame i, θi,

can be given by:

θi = arccos(a(gt)
i · a(rec)

i ). (5.16)

However, this formulation is ambiguous. If the rotation axis was to be defined as anti-parallel to the

x-axis, it will still satisfy the same equations. In practice, this is not troublesome as it is just a matter of

fixating the referential, and we also do not know the true rotation axis. Still, when we need to measure

the angle between the ground truth and reconstructed axis, we must assure the correctness of the

axis orientation. Thus, we define a(rec)
i as the vector, among the two possible vectors, that yields the

smaller estimation of θ. Finally, we estimate the error measurement for the hinge joint as the average

angle between the ground truth and reconstructed axes over all the F frames:

ε(H) =
1
F

F∑
i=1

|θi| . (5.17)

5.3.2 Hinge joint factorization with additive Gaussian nose

By using equation 5.17 we can now carry out a statistical analysis of the performance of the algo-

rithm. This is done by running the hinge joint factorization algorithm to the test battery, composed of

1000 completely random hinge joint motions, using 7 different levels of AWGN. Again, the noise levels

are defined based on the variance of the Gaussian distribution, with values: σ2 = 0, 0.01, 0.05, 0.1, 0.2,

0.4 and 0.6. The statistical results are represented by a box plot on Figure 5.9. Table 5.3.2 presents

the median value of ε(H) in each test, versus the level of noise.
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Figure 5.9: A box plot for the Hinge Joint Error angle with 7 different levels of noise.

Notice that the axis of rotation is defined by two parameters: the direction, given by equation (5.15),
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and the joint centre, given by d(1). When evaluating the uncertainty on the axis reconstruction, we must

both. Still, the uncertainty on the joint centre location was already computed for the universal joint, as

the equations that define it are the same in both cases. Therefore we will only analyse the direction of

the reconstructed axis.

Figure 5.9 shows that the algorithm presents good convergence, as there is a very small IQR in

every test, while the few existent outliers are very close to the data limits. The values for the average

error angle between the ground truth and reconstructed axis are presented in Table 5.3. For higher

noise levels (σ2 ≥ 0.2), mean error angle seems to increase linearly with the variance of the AWGN.

Still, these error levels are quite high, as the cube was built with side of 2 units.

Table 5.4: Mean error in the Hinge Joint case vs. Noise Level

σ2 ε
(H)
median (degrees)

0 5.18× 10−6

0.01 7.1× 10−3

0.05 3.2× 10−1

0.1 6.1× 10−1

0.2 1.2
0.4 2.4
0.6 3.6

5.3.3 Real data

For the illustration of the hinge joint factorization algorithm applied to real data, we will use data

captured in the Augmented Human Interaction Laboratory of the Department of Computer Science

of Queen Mary, University of London. Again, this data was given by a VICON commercial MOCAP

system. The data represents an arm exploring the range of motion of the elbow articulation. In Figure

5.10, we present frames from the real images, compared to the correspondent reconstruction of our

algorithm, in roughly the same camera orientation. The hinge joint axis is represented in green, while

the two bodies composing the joint are represented in blue and red respectively.

While there is no ground truth data to compare this results, the location of the axis is consistent with

what is expected from that type of motion. Given the accuracy of the algorithm with synthetic data, it

is expected that, apart from model deviations (i.e. human articulations not being completely described

by the joint models) the recovered parameters should also have good accuracy.

5.4 Multiple joints

Now that we have exemplified the application of the algorithms for each of the different kinds of

joints, we can combine them to analyse a full human body. The data used in this section was obtained

from the freely available database of the Graphic Lab of Carnegie-Mellon University. We will apply the

51



33

−300
−200
−100

600 650 700 750 800 850 900 950 1000

1300

1350

1400

1450

1500

1550

1600

1650

1700

1750

1800

−300−200−100 0600 650 700 750 800 850 900 950 1000

1350

1400

1450

1500

1550

1600

1650

1700

1750

−350
−300
−250
−200
−150

500 600 700 800 900 1000

1400

1450

1500

1550

1600

1650

1700

1750

Figure 5.10: On top, some sample frames of the real sequence. On the bottom, the corresponding
frames of the reconstructed motion, with the joint axis represented in green.

algorithms to two sequences of very common motions: jogging and kicking a football. In these motions

we modelled the knee and elbow articulations as a hinge joint, and the ankle articulation as a universal

joint. Other articulations were not modelled because the particular placement of the markers on the

subject made hand segmentation difficult.

In Figure 5.11 we present a sequence of frames from the reconstruction of the motion of a human

subject jogging. For the hinge joints we represent the rotation axis in green, and for the universal joints

we represent the joint centre in red.
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Figure 5.11: Multiple joint parameter estimation during a jogging motion. The Knee and elbow articula-
tions were modelled as hinge joints. Their joint axis are represented in green. The ankle was modelled
as a universal joint and its joint centre is represented in red.

In Figure 5.12 we present a sequence of a human subject kicking a football. Again, the joint axes for

the hinge joints are represented in green, while the joint centres of the universal joints are represented

in red.

As there is no gold-standard method on determining the real axis and joint centres, we can only
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Figure 5.12: Multiple joint parameter estimation of a subject kicking a football. Knee and elbow artic-
ulations were modelled as hinge joints. Their axis of rotation is represented in green. The ankle was
modelled as a universal joint. The corresponding joint centre is represented in red.

judge them by the graphical representation of the joints. Still, it is clear from Figure 5.11 and Figure

5.12 that the reconstructed joint centres and axes are consistent with what is expected from those

articulations.

5.5 Quadratic model

In order to qualitatively evaluate the performance of our quadratic model for non-rigid bodies, we

reconstructed a motion of a flexing arm. The model bounds for the deformation values were incor-

porated on the MATLAB function that is responsible for the non-linear least-squares optimization step

on the algorithm, the function lsqnonlin.m. As this data was acquired using an elevated number of

markers, it provides good information about the soft-tissue deformations. The motion reconstruction

was then compared to the reconstruction provided by our weighted factorization approach, in order to

evaluate the improvements provided by our model. Images from the reconstruction of the motion using

our quadratic model with BA is presented in Figure 5.13, on the top, while the corresponding images

of the reconstruction of the motion using the weighted factorization is presented in Figure 5.13, on the

bottom.

The analysis on the accuracy of the reconstruction of the motion matrix W for the forearm shows

that the BA minimisation provided a decrease on the error, of about 2 orders of magnitude. For the

upper arm, we observed a decrease on the error of 1 order of magnitude. This data is backed up

by Figure 5.13, where we can clearly see that the quadratic model and BA provide a more accurate

reconstruction of the motion matrix W.

Using the rigid component of the quadratic model, we estimated the parameters of the hinge joint

used to model the elbow articulation, and the parameters of the universal joint used to model the

shoulder articulation. This data is represented Figure 5.14. As there is no ground truth data for the

joint parameters, a qualitative analysis of the figures is the only available method for evaluating the

performance of the algorithm. Still, as can be seen on Figure 5.14, both universal and hinge joint
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Figure 5.13: Two frames exemplifying the quadratic model with BA, and the weighted factorization ap-
proaches on the reconstruction of a non-rigid motion of a human arm. The original data is represented
by blue circles on all the images. On the upper images, the quadratic model and BA reconstruction is
represented as red asterisks. On the lower images the reconstruction using the weighted factorization
is represented by black asterisks.

parameters are consistent with the given motion.

A good motion description and a consistent joint parametrisation are good indicators for the accu-

racy of this algorithm on modelling articulated non-rigid bodies. Still, a more conclusive analysis can

only be done with a proper validation, using ground truth data for the joint parameters. Nonetheless,

this algorithm provides promising indicators for its application on this problem.
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Figure 5.14: Two frames showing the reconstruction of the motion of a human arm. The human torso
is represented by magenta dots, while the upper arm is represented by red dots and the forearm is
represented by blue dots. The rotation axis of the hinge joint used to model the elbow articulation is
represented in green. The joint centre of the universal joint used to model the shoulder articulation is
represented by the red circle with lines.
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Chapter 6

Conclusion

6.1 Summary

In this thesis we presented algorithms to create articulated 3D human models, based on MOCAP

systems, assuming motion segmentation is known. These algorithms rely on an extended formulation

of existing SfM algorithms for sets of 2D images to the 3D case.

We then developed a weighted factorization method, which penalises highly deformable points,

in order to retrieve a more accurate rigid body description of non-rigid bodies. In the case of non-

rigid bodies, this algorithm proved to be more accurate than the existent non-weighted factorization

approaches. The weighted factorization algorithm was also extended to deal with occlusion, being

shown, by analysis of synthetic data, that it can successfully deal with up to 50% of missing data.

Our method for retrieving the joint parameters of articulated rigid systems, linked by universal and

hinge joints, was evaluated using synthetic data with different levels of noise. It proved to return ac-

curate parameters, consistent with the motion observed. Real data was also used for a qualitative

analysis on the performance of these algorithms, giving satisfactory results.

To deal with soft-tissue artifacts, we proposed a new quadratic model for non-rigid bodies. A qual-

itative analysis of this model was done by applying it to real data describing an articulated scene

composed of non-rigid bodies. The results show that the joint parameters obtained are consistent with

the motion, and the motion reconstruction showed improvements of 1 to 2 orders of magnitude on the

error, when compared to the weighted factorization approach.

6.2 Future work

This work provides an insight about the potential applications of structure from motion algorithms

in the field of biomechanics. Although not thoroughly validated, our quadratic model for non-rigid

bodies gives promising indications towards its applicability on this subject. Naturally, there is room for

improvement, and new research paths to follow. We would like to emphasise the following.
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Automatic motion segmentation is far from being solved [49]. In this work we assumed segmentation

is known. Still, a full automatic method for building human articulated models will need to incorporate

automatic segmentation methods.

The new quadratic model for non-rigid bodies introduced in this thesis has given promising indi-

cations about its ability to model the non-rigid properties of the human soft-tissue. However, the role

of the different types of deformations discussed and their upper and lower bounds need to be further

studied in order to lead to a refined model. Additionally, new approaches for parameter estimation, i.e.,

computational optimization techniques, should also be studied.

Although we tested our algorithms with synthetic data with relative success, on real data we were

only able to perform a qualitative analysis. It is of focal interest to validate our approach in a clinical

scenario with the appropriate setup. The real data validation is still an open issue which solution could

lead to an important breakthrough of this technique for clinical analysis.
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Appendix A

Mathematical Formulation for the

Weighted Factorization Algorithm

Let us consider the least-squares problem of finding a general m× k matrix X such that:

arg min
X

||A X− B|| . (A.1)

where A is a general n ×m full-rank matrix, and B is a general n × k matrix. It can be shown that the

solution to the least-squares problem is given by equation (A.2)[ref]:

A X = B

(AT A) X = AT B

X = (AT A)−1 AT B. (A.2)

Let us now return to the least squares problem defined by equation (2.34), in the case were we

assume to known M. Since the weight matrix Cj is the inverse co-variance matrix of the 3D coordinates

of point j, it has full-rank and it is positive definite. Thus we can use Cholesky decomposition to write:

Cj = Pj P
T
j . (A.3)
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Using this result together with equation (2.34) we now write:

arg min
S

i=F∑
i=1

j=P∑
j=1

(w̃(r)
ij − Misj)T PjP

T
j (w̃(r)

ij − Misj)⇔

⇔ arg min
S

i=F∑
i=1

j=P∑
j=1

[PT
j (w̃(r)

ij − Misj)]T [PT
j (w̃(r)

ij − Misj)]⇔

⇔ arg min
S

)
i=F∑
i=1

j=P∑
j=1

(PT
j w̃(r)

ij − PT
j Misj)T (PT

j w̃(r)
ij − PT

j Misj)⇔

⇔ arg min
x

∣∣∣∣∣∣B(S) − A(S) x(S)
∣∣∣∣∣∣ , (A.4)

where b(S)
ij = PT

j w̃ij , A(S)
ij = PT

j Mi and x(S)
j = sj . Note that ||B− Ax|| = ||Ax− B||. Thus we can

now apply the result derived in equation (A.2). Writing the correspondent equations for each vector xj ,

and substituting for sj , w̃ij , Cj = Pj PT
j and Mi we will get equation (2.36). Based on analogous steps,

equation (2.39) can also be proved:

arg min
mi

i=F∑
i=1

j=P∑
j=1

(w̃(r)
ij − Sjmi)T PjP

T
j (w̃(r)

ij − Sjmi)⇔

⇔ arg min
mi

i=F∑
i=1

j=P∑
j=1

[PT
j (w̃(r)

ij − Sjmi)]T [PT
j (w̃(r)

ij − Sjmi)]⇔

⇔ arg min
S

)
i=F∑
i=1

j=P∑
j=1

(PT
j w̃(r)

ij − PT
j Sjmi)T (PT

j w̃(r)
ij − PT

j Sjmi)⇔

⇔ arg min
x

∣∣∣∣∣∣B(M) − A(M) x(M)
∣∣∣∣∣∣ , (A.5)

where b(M)
ij = PT

j w̃ij , A(M)
ij = PT

j Sj and x(M)
j = mi. Applying the result derived on A.2 and substituting

for mi, w̃ij , Cj = Pj PT
j and Sj , we will get equation (2.36).
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Appendix B

Procrustes Analysis

Procrustes Analysis is method for registering two shapes, represented by point clouds, using only

a rotation and a scale factor. In our case we will only deal with the rotation factor, as scale is treated in

another way in the algorithm. Consider a general 3× k matrix B and a general 3× k matrix A. We want

to find the best 3× 3 rotation matrix R that satisfies the condition:

arg min
R

||A− R B|| . (B.1)

Since we are using the Frobenius norm, we know that ||X|| = trace(XT X). Applying this result to

equation (B.1), and using the properties of the trace operator we get:

||A− R B|| = trace(AT A + BT B)− 2× trace(B AT R). (B.2)

Since only the second term depends on R, the registration problem can also be stated as:

arg max
R

trace(B AT R). (B.3)

Let us use the SVD to define B AT = U S VT . From the cyclic property of the trace operator we get:

trace(B AT R) = trace(U S VT R) (B.4)

= trace(S VT R U) (B.5)

= trace(S H). (B.6)

Note that R, U and V are orthogonal matrices, and so H is also an orthogonal matrix. By the definition

of trace we have that:

trace(S H) =
3∑

i=1

si × hii. (B.7)
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Note that the singular values si are all non-negative. Being H an orthogonal matrix, trace(S H) is maxi-

mum when hii = 1 i.e. when H is the 3× 3 identity matrix. Thus we can finally define R as:

R = U VT . (B.8)
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