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Abstract—Thepaper describes the rank 1weighted factorization solution to the structure frommotionproblem. Thismethod recovers the

3Dstructure from the factorization of a datamatrix that is rank 1 rather than rank 3. Thismatrix collects the estimates of the 2Dmotions of a

set of feature points of the rigid object. These estimates are weighted by the inverse of the estimates error standard deviation so that the

2Dmotionestimates for “sharper” features,whichare usuallywell-estimated, are givenmoreweight,while the noisiermotionestimates for

“smoother” features are weighted less. We analyze the performance of the rank 1 weighted factorization algorithm to determine what are

the most suitable 3D shapes or the best 3D motions to recover the 3D structure of a rigid object from the 2D motions of the features. Our

approach is developed for the orthographic cameramodel. It avoids expensive singular value decompositions by using the powermethod

and is suitable to handledensesets of featurepointsand longvideosequences.Experimental studieswith synthetic and real data illustrate

the good performance of our approach.

Index Terms—Factorization methods, structure from motion, image sequence analysis, rigid body motion, uncertainty in motion

analysis, power method, weighted factorization.
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1 INTRODUCTION

WE propose the rank 1 weighted factorization algorithm to
solve the structure from motion (SFM) problem for the

orthographic camera model—recovering the 3D structure
(3D shape and 3D motions) of a rigid object from the noisy
estimates of the 2D motions across a monocular video
sequence of point features of the object.

1.1 Brief Review of the Literature

The computer vision literature has widely addressed the
problem of recovering 3D structure from a video
sequence—the structure from motion (SFM) problem—since
the strongest available cue in an image sequence is the
2D motion of the brightness pattern in the image plane.
Applications range from robotics to digital video.

Anumber of approaches use only twoor three consecutive
frames. Most start by computing the 2D imagemotion, either
in terms of a set of correspondences between feature points
[1], or a dense optical flowmap [2]. Then, the 3Dmotion and
3Dshape are computed from the 2Dmotion estimates.Others
overcome the ill-posedness inherent to the estimation of the
2D imagemotion by using only the normal component of the
optical flow [3], or by estimating the 3D structure directly
from the image intensity values [4], [5], without computing
the 2D motion as an intermediate step.

When the scene is rigid, processing the whole video
sequence can lead to a more accurate estimate of the
3D structure since it uses the 2D motion of the brightness
pattern across a large set of frames. However, multiframe
SFM is a challenge due to the nonlinearity and high-
dimensionality in the problem. Existing approaches to
multiframe SFM include: 1) nonlinear optimization meth-
ods, for example, a popular choice in computer vision is the
Levenberg-Marquardt procedure [6], [7]; 2) recursive esti-
mation techniques based on the extendedKalman-Bucy filter
(EKBF) [8], [9]; or 3) linear subspace constraints that lead to
the so-called factorization methods introduced by Tomasi
and Kanade in the early 1990s [10], [11], [12].

The factorization method is an attractive approach to
recover the 3D motion and 3D shape of a rigid object. The
original formulation used the orthographic projection model
that is known to be a good approximation to the perspective
projection when the object is far from the camera. It tracks a
set ofN feature points across an image sequence of F frames
and collects these trajectories in a 2F �N measurement
matrix R. Due to the rigidity of the object, the measurement
matrixR is rank 3 in a noiseless situation—it is the product of
a 2F � 3 motion matrix by a 3�N shape matrix. The
3Dmotion of the camera and the 3D positions of the features
are recovered by Singular Value Decomposition (SVD) of the
measurement matrix R.

The factorization method was later extended to the
scaled-orthographic, or pseudo-perspective, and paraper-
spective projection models [13], [14]. Factorization-like
algorithms were also proposed to address the full perspec-
tive projection model, see, for example, [15]. Other authors
used correspondences between line segments [16]. We have
extended in prior work the factorization method to work
with surface patches [17], [18] rather than feature points.
Morita and Kanade [19] proposed a recursive algorithm for
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the factorization method and reference [20] treated the
multibody case.

1.2 Rank 1 Weighted Factorization

Rank 1 factorization. In this paper, we exploit a degree of
freedom not yet used by existing factorization frame-
works—the freedom to choose the relative alignment
between the object and camera coordinate systems in one of
the images in the sequence. We develop a method that
recovers the SFM through the factorization of a rank 1matrix
rather than a rank 3 matrix. We avoid altogether singular
value decomposition (SVD) computations by performing the
rank 1 factorization by the power method [21], a computation-
ally much simpler method than the SVD of a rank 3 matrix.
This reduces significantly the cost of the factorization
method, which is highly relevant, in practice, where the
dimensions of R can be very large. We develop our method
for the orthographic camera model.

Weighted factorization. In practice, the entries of the
matrix R that are the estimates of the 2D motions are noisy.
Further, “sharper” features are usually easier to track than
features with “smoother” spatial brightness. To accommo-
date these different levels of errors in the 2D motion
estimates, [22] develops a two-step suboptimal algorithm
that factors a rank 6 matrix. Another issue is occlusion.
Poelman [13] considers reliabilityweights—when a feature is
lost, it is given the weight of zero—and recovers the
3D structure by an iterative method, which may fail to
converge. This iterative method was later extended to
accommodate reliability weights other than zero or one [23].

We derive a weighted version of the rank 1 factorization. By
choosing the weights to be time invariant, theweighted rank 1
factorization is equivalent to the nonweighted rank 1
factorization of a modified data matrix: The resulting algo-
rithm is noniterative and factors a matrix that is still rank 1.

Performance. An interesting theoretical, as well as
practical, issue is to know what 3D motions are better suited
to recover the 3D shape of an object, or what 3D shapes are
better restored from the 2D motions. We answer these
questions by analysis of the rank 1 factorization algorithm.
We show, for example, that the shape is best retrieved from
orthogonal views aligned with the longest and smallest axes
of inertia of the object.

1.3 Paper Organization

In Section 2, we review the factorization approach to SFM.
Section 3 details the two stages of the rank 1 factorization
method—decomposition and normalization. In Section 4, we
analyze how the 3D structure (motion and shape) affects the
behavior of the decomposition and normalization stages.
Section 5 extends our approach to accommodate different
confidence weights associated with the feature points,
introducing the rank 1 weighted factorization method. The
appendixpresents closed formexpressions for theweights. In
Section 6, we describe experiments that illustrate and
demonstrate the performance of our methods. Section 7
concludes thepaper.A summaryof some results in this paper
on the rank 1 factorization was presented in [24].

2 STRUCTURE FROM MOTION: FACTORIZATION

APPROACH

We consider a rigid body viewed by a camera; either the
object, the camera, or both can move. Without loss of

generality, we discuss a moving object and a static camera.
We assume the orthographic camera model. We associate to
the object and to the camera an object coordinate system
(o.c.s.) and a camera coordinate system (c.c.s.) with axes
labeled by x, y, and z, and u, v, and w, respectively. The
plane defined by the axes u and v is the camera plane.

In this paper, the shape of the object is described by the
3D position ðxn; yn; znÞwith respect to (wrt) the o.c.s. of a set
of n ¼ 1; . . . ; N feature points. The 3D motion of the object is
defined by specifying the position of the o.c.s. x; y; zf g
relative to the c.c.s. u; v; wf g, i.e., by specifying at each
instant f a translation-rotation pair ��f ;�f

� �
. The translation

vector ��f ¼ tuf ; tvf ; twf

� �T
defines the coordinates of the

origin of the o.c.s. wrt the c.c.s., and the rotation matrix �f

orients the o.c.s. relative to the c.c.s.
At instant f , feature n has the following coordinates in

the camera coordinate system,

1 � f � F; 1 � n � N :

ufn

vfn

wfn

264
375¼

ixf iyf izf

jxf jyf jzf

kxf kyf kzf

264
375

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�f

xn

yn

zn

264
375þ

tuf

tvf

twf

264
375

|fflfflffl{zfflfflffl}
��f

: ð1Þ

The entries of�f , ixf ; jxf ; kxf are the direction cosines of the
x-axis wrt each of the axis u, v, and w, and similarly for the
remaining entries of �f . Equation (1) encapsulates the rigid
body assumption: The instantaneous rotation matrix �f

and the translation vector ��f that define the rigid body
motion at time f are the same for all features 1 � n � N .

In the video sequence, only the projections on the image
plane are available. The corresponding coordinates are
given by the first two equations in (1),

1 � f � F; 1 � n � N :

ufn

vfn

� �
|fflfflffl{zfflfflffl}
ufn

¼
ixf iyf izf

jxf jyf jzf

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�f

xn

yn

zn

264
375

|fflfflffl{zfflfflffl}
sn

þ
tuf

tvf

� �
|fflffl{zfflffl}
tf

: ð2Þ

Expression (2) makes clear that, due to the orthographic
camera model, the feature projections do not depend on the
translational component twf along the w-axis, the axis
perpendicular to the camera plane. The translational
component of the motion that can be recovered under
orthography is the translation parallel to the camera plane,
represented by the vector tf ¼ ½tuf ; tvf �T .

Collecting the N vector-equations corresponding to
instant f , we get the matrix equation

1 � f � F :

uf1 . . . ufN½ � ¼ �f s1 . . . sN½ � þ tf . . . tf½ �
ð3Þ

that again, using obvious notation, is written in matrix
format

1 � f � F : UT
f ¼ �fS

T þ tf1
T ; ð4Þ

where 1 ¼ 1; . . . ; 1½ �T is an N-dimensional vector.
By centering the object coordinate systemwrt the centroid

of the object features in 3D, we have
P

n xn ¼
P

n yn
¼

P
n zn ¼ 0. Likewise, centering the camera coordinate
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system wrt the centroid of the projections of the features on
the image plane, we get

PN
m¼1 ufm ¼ 0. With these centered

coordinate systems, (4) is simply rewritten as

1 � f � F : UT
f ¼ �fS

T : ð5Þ

We now collect the F matrix equations in the single
matrix equation

UT
1

..

.

UT
F

264
375 ¼

�1

..

.

�F

264
375ST ; ð6Þ

which we write compactly as

R ¼ MST : ð7Þ

The following terminology is common: R is the measure-
ment or data matrix, M is the motion matrix, and S is the
shape matrix. To summarize, these matrices are

R ¼

u11 u12 � � � u1N

v11 v12 � � � v1N

..

. ..
. . .

. ..
.

uF1 uF2 � � � uFN

vF1 vF2 � � � vFN

266666664

377777775; M ¼

ix1 iy1 iz1

jx1 jy1 jz1

..

. ..
. ..

.

ixF iyF izF

jxF jyF jzF

266666664

377777775;

S ¼

x1 y1 z1

x2 y2 z2

..

. ..
. ..

.

xN yN zN

266664
377775:

ð8Þ

Thematrix format equation (7) was introduced by Tomasi
and Kanade in their original work, see [10], [11], [12]. These
references reduce the SFM problem to the following. The
projections of theN features are tracked across the F frames,
i.e.,R is measured. This 2F �N matrix is rank deficient. In a
noiseless situation, R is rank 3, reflecting the high redun-
dancy in the data due to the 3D rigidity of the object. The
factorization approach of Tomasi and Kanade formulates the
SFM problem as the minimization

min
M;S

R�MST
�� ��

F
; ð9Þ

where the solution space is constrained by the structure of
the matrix M. The notation :k kF represents the Frobenius
norm [21]. Tomasi and Kanade [12] present a suboptimal
solution to this factorization in two stages. The first stage,
decomposition stage, solves R ¼ MST in the least square (LS)
sense by computing the SVD of R and selecting the three
largest singular values. From R ’ U�VT , where U is
2F � 3, � is diagonal 3� 3, and VT is 3�N , one solution is
M ¼ U�

1
2A, ST ¼ A�1�

1
2VT , where A is a nonsingular 3�

3 matrix. The second stage, normalization stage, computes A
by approximating the constraints imposed by the structure
of the matrix M. Although the overall result of the
decomposition and normalization is suboptimal in an
Euclidean (or metric) sense, it is interesting to note that
the rank 3 algorithm of Tomasi and Kanade is the optimal
affine reconstruction after decomposition of the 3D struc-
ture and camera motion.

3 RANK 1 FACTORIZATION

We derive now an alternative solution to the factorization in
(7) and (9) by exploiting further the structure of the
SFM problem. There is an additional degree of freedom that
is not exploited in the rank 3 factorization algorithm and that
is key to our development: The shape is invariant to the
particular relation between the object coordinate system and
the camera coordinate system. In other words, we can fix the
orientation of the o.c.s. with respect to the c.c.s. in one of the
images f—we call this image f the reference frame. To be
specific, we make the o.c.s. and the c.c.s. parallel in the first
frame f ¼ 1. With this choice, the 3D x- and y-coordinates of
each feature n equal the 2D u- and v-coordinates of the
projection of this feature n in the camera plane in the first
frame,

1 � n � N : xn ¼ uf¼1;n and yn ¼ vf¼1;n: ð10Þ

But, from (8), xn and yn, 1 � n � N , are the first two
columns of the 3D shape matrix S and, so, (10) means that
these two first columns of S are known and given by the
pixel coordinates of the features in frame 1.1 We take
advantage of this fact in our formulation of the SFM
problem, the rank 1 factorization. By knowing two columns
of S, SFM is reduced to the following much simpler
formulation: given the matrixR of 2D motions, compute the
matrix M of 3D motions and the third column of the shape
matrix S, i.e., the coordinates fzn; 1 � n � Ng of the
features. In the original factorization method [10], [11],
[12], the 3D structure is recovered up to a 3D rigid rotation.
Our choice of the alignment of the coordinate systems is
equivalent to fixing this 3D rigid rotation in such a way that
the camera rotation matrix in the reference frame is the
identity matrix.

Because we describe the unknown shape by the distances
along the third dimension for each pixel of the image plane,
this formulation seems to be in opposition to the idea
behind the original factorization method as formulated by
Tomasi and Kanade [10], [11], [12]. In their first paper [10],
the factorization method is motivated by emphasizing that
when the object is far from the camera the depth cannot be
computed, and the 3D shape must be represented in terms
of the set of coordinates fxn; yn; zng. We show here that, if
the unknown shape is represented by the entities we really
do not know, i.e., by the relative depths fzng, the solution to
the problem is simplified. In a certain sense, we simplify the
rank 3 factorization method by constraining the problem
further, much like Azarbayejani and Pentland [9] used the
fact that the coordinates along the axes defining the camera
plane are known to simplify earlier approaches to comput-
ing rigid SFM [8] by extended Kalman-Bucy filtering.

We comment here on one aspect that may be a source of
confusion regarding our approach.At first sight, it seems that
we have artificially simplified the original SFM problem by
introducing an arbitrary assumption, namely, that we force
the 3Dx- and y-coordinatesof the features to beknown, or that
their 2D motion estimates in the reference frame are known
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with no errors. In fact, we do not “arbitrarily” make such an

assumption, rather,we exploit this fact. In otherwords, this is

a “feature,” not a “bug” of our method. First, in many

applications in computer vision and in image processing,

features are not selected in 3D space since the object is most

likely not accessible, rather, they are selected indirectly by

choosing appropriate pixels in a reference image of the video

sequence, say frame f ¼ 1. Doing so, the 2Dpositions of these

features in this reference frame f ¼ 1 are known, since, after

all, we picked them: say, when choosing a pixel, for example,

at position uf¼1;1 ¼ 135 and vf¼1;1 ¼ 147 in frame 1 as (the

projection of) feature 1, we know exactly, with no error, the

coordinates of this pixel in the first frame. By aligning the

object coordinate system in frame 1 with the camera

coordinate system, we make xn¼1 ¼ uf¼1;1 ¼ 135 and yn¼1 ¼
vf¼1;1 ¼ 147 and, similarly, with the other N � 1 features.

Second, the 2D motions correspond to the displacements of

pixels across frames, for example, between pixels in frames

f � 2 and the reference frame f ¼ 1. These displacements are

estimated with errors. Our approach does work with these

noisy estimates just like the rank 3 algorithm. It is not that the

rank 1 method “arbitrarily” reduces the errors of the

estimates of the xn and yn coordinates of the features. On

the contrary, it exploits this additional structure and fixes

these coordinates. The 2D projections ufn and vfn of the

features f � 2, are still noisy and with errors. Finally, by

extracting from prior knowledge the x- and y-coordinates of

the features, we are left with estimating from the measure-

ments the third coordinate zn, n ¼ 1; � � � ; N , a much simpler

problem than the original problem of estimating all the

3D coordinates xn; yn; znð Þ, for all the features 1 � n � N .
On the other hand, there are applications where the

features cannot be chosen arbitrarily in a reference frame, for
example, because they are preselected from the 3D object
(e.g., using markers). In such applications the x- and
y-coordinates should not be assumed to be known with no
errors. In Section 4, we study the performance of the
algorithm in recovering the 3D structure in such applications.

Although nonlinear, the problem of estimating the matrix
M and the vector z ¼ ½z1; . . . ; zN �T from the matrix R has a
specific structure: it is a bilinear constrained LS problem. The
bilinear relation comes from (7),where themotion unknowns
and the shape unknowns appear multiplied by each other,
and the constraints are imposed by the pairwise orthonorm-
alityof the rowsof themotionmatrixM.Our solution is in two
steps: the decomposition stage that solves the unconstrained
bilinear problem; and the normalization stage that applies the
orthogonal constraints.

3.1 Decomposition Stage

Analogously to the decomposition stage of the original rank
3 factorization [11], [12], which computes the optimal affine
shape, the decomposition stage of the rank 1 factorization
algorithm computes the optimal relative depth subspace.

We start by defining the matrices R and M by excluding
from R and M in (8) the rows corresponding to frame 1,
thus R is 2ðF � 1Þ �N and M is 2ðF � 1Þ � 3. Then, write

M ¼ M0 m3½ � and S ¼ x y z½ � ¼ S0 z½ �; ð11Þ

where the matricesM0 and S0 contain the first two columns
of the matrices M and S, respectively, the vector m3 is the
third column of M, and the vectors x, y, and z are the
columns of S. Let the vector spaces

S0 ¼ range S0ð Þ ¼ span x;yf g and

S?
0 ¼ u : uTv ¼ 0; 8v 2 S0

	 
 ð12Þ

represent, respectively, the space spanned by the columns
of S0 and its orthogonal complement. We decompose the
relative depth vector z into the component S0b that belongs
to S0 and the component a that belongs to S?

0 ,

z ¼ S0bþ a; with aTS0 ¼ 0 0½ �: ð13Þ

We use (11) and (13) to rewrite the matrixR in (7), obtaining

R ¼ M0S
T
0 þm3b

TST
0 þm3a

T : ð14Þ

The decomposition stage solves equation (14) with
respect to the unknowns M0, m3, b, and a as the
unconstrained minimization

min
M0;m3;b;a

R�m0S
T
0 �m3b

TST
0 �m3a

T
�� ��

F
: ð15Þ

Weminimize (15) wrtM0 using the fact that the matrix S0 is
known. Standard algebraic manipulations [21] and using the
orthogonality between the vector a and the columns of the
matrix S0, a 2 S?

0 , see (13), lead to the estimate cMM0 ofM0,

cMM0 ¼ RS0 ST
0 S0

� ��1�m3b
T : ð16Þ

Replacing cMM0 in (14), we obtain the matrix eRR
eRR ¼ R I� S0 ST

0 S0

� ��1
ST
0

h i
¼ R�S?

0
; ð17Þ

where �S?
0

is the orthogonal projector onto the known
subspace S?

0 , see [21], given by

�S?
0
¼ I� S0 ST

0 S0

� ��1
ST
0 : ð18Þ

The minimization in (15) becomes

min
m3;a

eRR�m3a
T

��� ���
F
: ð19Þ

We interpret (19) and (17). First, the solution for the vectors
m3 and a in (19) is obtained from the rank 1 matrix that best
approximates eRR. Second, only the (direction of the) compo-
nent a of z is determined in the decomposition stage; the
other component b of z that lies in the known subspace S0 is
left undetermined at this stage. Finally, (17) says that the
relevant information in the measurements R regarding the

SFM problem is in the matrix eRR that is the projection of the
2Dmotions onto the subspace orthogonal to S0 generated by
x and y.

The rank 1 SVD solution to (19) is

eRR ’ u�vT ; bmm3 ¼ �u; âaT ¼ �

�
vT ; ð20Þ

where � is the largest singular value of eRR, u, and v are the
corresponding left and right singular vectors, and � is a
normalizing scalar different from zero. To compute u, �, and
v, we could perform the SVD of eRR; because eRR is rank 1, it is
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muchmore efficient to use instead less expensive algorithms,

in particular, we use the power method [21]. This makes the

rank 1 decomposition stage much simpler than the decom-

position step in the original factorization method of [12].

3.2 Normalization Stage

The normalization stage in the rank 1 factorization algorithm

is also simpler than the one in references [11], [12] because the

number of unknowns is three (� andb ¼ b1; b2½ �T ) as opposed
to the nine entries of a generic 3� 3 normalization matrix. It

follows by imposing the constraints that come from the

structure of the matrixM. From (2), (6), (7), and (8), the rows

iTf ¼ ½ixf ; iyf ; izf � and jTf ¼ ½jxf ; jyf ; jzf � of each block�f ofM

must be orthonormal,

iTf if ¼ jTf jf ¼ 1; and iTf jf ¼ 0: ð21Þ

By replacing the estimate bmm3 given by (20) in (16), we get

an estimate for cMM0. Replacing this estimate cMM0 of M0 as

well as the estimate of bmm3 given in (20) in (11), we get the

following estimate cMM of M,

cMM ¼ cMM0 bmm3

h i
¼ N

I2�2 02�1

��bT ��

� �
;where

N ¼ RS0 ST
0 S0

� ��1
u

h i
:

ð22Þ

Denoting by bnnT
i the row i of thematrixN, the constraints (21)

on the rows of cMM are expressed in terms of bnnT
i , �, and b, as

bnnT
i

I2�2 ��b
��bT �2ð1þ bTbÞ

� �bnni ¼ 1; 1 � i � 2ðF � 1Þ; ð23Þ

bnnT
2j�1

I2�2 ��b
��bT �2ð1þ bTbÞ

� �bnn2j ¼ 0; 1 � j � F � 1: ð24Þ

Rewrite bnnT
i ¼ nT

i ui

� �
, where ui is the ith component of the

vector u. Replacing this definition of bnnT
i in (23) and (24),

after algebraic manipulations, these equations become

�2uin
T
i u2

i

� � �b
�2 1þ jjbjj2

� �� �
¼1� jjnijj2; 1 � i � 2ðF � 1Þ;

ð25Þ

� u2j�1n
T
2j þ u2jn

T
2j�1

� �
u2j�1u2j

h i �b

�2 1þ jjbjj2
� �" #

¼ �nT
2j�1n2j; 1 � j � F � 1:

ð26Þ

The 3� 1 normalization parameter vector �� ¼ �bT
� �T

is

now determined from the linear LS solution of the system of

3ðF � 1Þ equations (25) and(26). We collect these equations

in matrix format and get

��� ��ð Þ ¼ ��; ð27Þ
where the 3� 1 vector �� ��ð Þ, the 3ðF � 1Þ � 1 vector ��, and

the 3ðF � 1Þ � 3 matrix � are

�� ��ð Þ ¼ �bT �2ð1þ jjbjj2Þ
h iT

; ð28Þ

�� ¼

1� jjn1jj2

� � �
1� jjn2ðF�1Þjj2

� nT
1 n2

� � �
�nT

2j�1n2j

� � �
�nT

2ðF�1Þ�1n2ðF�1Þ

266666666666666664

377777777777777775

T

; ð29Þ

� ¼
�2u1n

T
1 u2

1

..

. ..
.

�2u2ðF�1Þn
T
2ðF�1Þ u2

2ðF�1Þ

� u1n
T
2 þ u2n

T
1

� �
u1u2

..

. ..
.

� u2j�1n
T
2j þ u2jn

T
2j�1

� �
u2j�1u2j

..

. ..
.

� u2ðF�1Þ�1n
T
2ðF�1Þ þ u2ðF�1Þn

T
2ðF�1Þ�1

� �
u2ðF�1Þ�1u2ðF�1Þ

26666666666666666666664

37777777777777777777775

:

ð30Þ

We compute the least-squares solution of (25) and (26) by
minimizing the cost function

C
�
�� ��ð Þ

�
¼

�
��� ��ð Þ � ��

�T �
��� ��ð Þ � ��

�
ð31Þ

wrt ��. The gradient of the cost function wrt �� is

r��C
�
�� ��ð Þ

�
¼ r���� ��ð Þr��C

�
�� ��ð Þ

�
; ð32Þ

where the gradients of a scalar and of a vector used in (32)
are defined as

r��C
�
�� ��ð Þ

�
¼ @C

@��
¼ @C

@�

@C

@b1

@C

@b2

� �T
;

�
r���� ��ð Þ

�
ij
¼ @��

@��

� �
ij

¼ @�j
@�i

; 1 � i; j � 3;

ð33Þ

with �1 ¼ �, �2 ¼ b1, and �3 ¼ b2.
To compute the linear LS solution of the system of (25)

and (26), we equate to zero the gradient in (32), obtaining
after substituting for C

�
��
�
and performing the derivatives

bT 2�ð1þ jjbjj2Þ
�I2�2 2�2b

� �
�T

�
��� ��ð Þ � ��

�
¼ 0: ð34Þ

Since � 6¼ 0, see (20), the first factor in the left-hand side
is full rank. Equating then to zero the second factor in (34),
the linear LS solution is, see [21],

��LS ¼ �T�
� ��1

�T ��; ð35Þ

assuming that � is rank 3.
The corresponding LS solution for the normalization

parameter vector �� ¼ � bT
� �T

is obtained by inverting (28)
leading to
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b��j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3LS � �21LS � �22LS

q
; bbb1 ¼ �1LS=b��; bbb2 ¼ �2LS=b��: ð36Þ

Clearly, these solutions exist and make sense if �3LS >
�21LS � �22LS . We discuss in Section 4 when this fails.

Remark. Equation (36) determines only the magnitude of
�̂�, not its sign. This ambiguity is inherent to the orthographic
projection model. Consider an object with relative depth z ¼
�z (mirror reflection) and whose motion is such that the
third column of the rotation matrix ism3 ¼ �m3. Then, from
(13) and (14), the measurement matrix R is the same if b ¼
�b and a ¼ �a. This causes a change in the sign of �, as seen
from (20). See also, from (2), that the trajectories of the feature
points for the two objects are the same. This is because all the
quantities in the right-hand side of (2) are the same for the
two scenarios, except for izf ¼ �izf , jzf ¼ �izf , and
zn ¼ �zn, which leave their products invariant,i.e., izfzn ¼
izfzn and jzfzn ¼ izfzn.

Although, we use the orthographic projection model in
deriving the rank 1 factorization method, our derivations
are easily extended to more general camera models by
proceeding as references [13], [14] do for the original
factorization method of [11], [12].

4 ANALYSIS OF THE FACTORIZATION ALGORITHM

We analyze the accuracy of the rank 1 approximation in the
decomposition stage and discuss the situations that may
cause its normalization stage to fail.

4.1 Influence of the 3D Structure on the Rank 1
Approximation

The decomposition stage estimates themotion vectorm3 and
the shape vector a from a noisy observation eRR ¼ m3a

T þ eNN ,
but onlyup to a scale parameter�, see (20), i.e., it estimates the
1D linear subspaces of m3 and a. The accuracy of these
estimates improves as the ratio between the singular value
� ¼ km3kkakof thenoiselesscomponentof eRRandthesingular
valueof itsnoise component increases, see [25].This ratio is an
equivalent signal to noise ratio (SNR). To increase this SNR,
we either increase the “signal” � or decrease the noise level.
The noise corresponds to the errors induced in the 2Dmotion
measurements provided by the tracking algorithm. We
assume that we have no control over these and focus on how
tomaximizekm3kandkakbymanipulatingeither the3Drigid
shape or the relative motion between the camera and the
object.Weassumethat theobject is stationary,only thecamera
moves.

Maximizing km3k. The entries of m3 are the entries izf
and jzf of the rotation matrices that orient the camera
coordinate system relative to the object coordinate system,
i.e., the z-component of each orthonormal pair fif ; jfg in �f ,
see (2). Since we excluded from M in (8) the first two rows,
which correspond to the reference frame, we have

m3 ¼ iz2 jz2 iz3 jz3 � � � � � � izF jzF½ �T : ð37Þ

Each pair of entries fizf ; jzfg is constrained by

2 � f � F : i2zf þ j2zf � 1 ð38Þ

since each izf ; jzf ; kzf
� �

is the third column of a rotation
matrix �f , see (1), hence, an orthonormal vector. To
maximize m3, we want (38) to be an equality for f � 2,
which occurs when kzf ¼ 0, i.e., when at each frame f the

optical axis of the camera is perpendicular to the z-axis.
Since the object and camera coordinate systems coincide in
the first frame, this condition means that the camera in
frame f points in a direction that is perpendicular to the
direction it pointed in frame 1. This is intuitively pleasing:
The unknown z-coordinates of the feature points are most
accurately estimated from their projections onto planes that
are parallel to the z-axis, i.e., planes that are orthogonal to
the image plane in the reference view. Further, since the
analysis did not restrict in any way the 3D shape of the
object, we conclude that the optimal position of the camera
for all frames after frame 1 does not depend on the
particular object shape. This camera placement strategy was
arrived at by paying attention to the behavior of the rank 1
factorization algorithm alone. In practice, because conven-
tional feature trackers only work well when the interframe
displacements are kept small, one should use a camera
trajectory that goes smoothly from the reference view to the
orthogonal views. Also, when the goal is to refine the
estimates of the 3D structure by using bundle-adjustment to
minimize the reprojection error, one should place the
cameras in a more evenly distributed configuration.

Maximizing kak. The vector a ¼ �S?
0
z, see (13), is the

component of the relative depth vector z in the subspace S?
0

that is orthogonal to the space spanned by the vectors x and
y. The magnitude kak increases with the magnitude kzk and
with the degree of orthogonality between z and the vectors
x and y in S0. The choice of the first view, the reference
view, affects the magnitude kak because it determines the
object coordinate system and, so, affects S0 and the
definition of z, the third column in the shape matrix S.

To determine the “best” reference view, we start with the
SVD of the shape matrix S

S ¼ US�SV
T
S : ð39Þ

If we change the reference view, the resulting shape matrix
S� is

S� ¼ S�; ð40Þ

where � is a rotation matrix. Since � is a unitary matrix,
from (39), the SVD of S� is

S� ¼ US�SV
T
S�: ð41Þ

Themagnitude kak is maximizedwhen the third column z of
S� is orthogonal to the first two and its norm kzk is the largest
possible. Since the columns of US in (39) and (41) are
orthonormal vectors u1, u2, and u3, the choice of � must be
such that the resulting z has the form z ¼ �imaxuimax, where
�imax is the largest singular value in �S in (39) and (41), and
uimax the corresponding singular vector. Assuming that the
singular values in �S are nondecreasingly ordered,2 an
optimal � is such that VT

S� ¼ I. In this case, �imax ¼ �3.
Since VS is unitary, an optimal solution for the rotation
matrix � is then

� ¼ VS: ð42Þ

This solution is not unique. The condition z ¼ �imaxuimax ¼
�3u3 restricts only two of the three degrees of freedom of
�. The third degree of freedom, a rotation between the
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vectors u1;u2f g and x;yf g does not affect the magnitude
kak ¼ kzk ¼ �2

3.
With the optimal rotation matrix � in (42), the shape

matrix S� is simply given by

S� ¼ US�S ¼ �1u1 �2u2 �3u3½ �; ð43Þ

i.e., the optimal choice for the reference view corresponds to
aligning the camera optical axis, the z-axis, with the object
axis of smallest inertia (in this case, the inertial moment wrt
the z-axis is given by �2

1 þ �2
2).

This analysis provides a further distinction between the
rank 1 and the rank 3 algorithms. If the object shape is
almost planar (�1 close to zero) or almost linear (both �1 and
�2 close to zero), the best rank 3 approximation to R is
sensitive to the noise [13] and the original factorization
method of [12] fails. This happens even when the average
magnitude of the relative depths, given by �2

3, is high. In
contrast, if �23 is large enough, the best rank 1 approximation
to the matrix eRR still performs well and captures the shape
subspace (as we saw, the quality of the method is
proportional to �2

3 and independent of �1 and �2).

4.2 Normalization Failure

If ��LS ¼ ½�1LS; �2LS; �3S�T determined by the LS solution of the
system (27), see Section 3.2, is such that

�3LS < �21LS þ �22LS; ð44Þ

we cannot determine the scalar � and the vector b ¼
b1; b2½ �T from (36), and the gradient r��C �� ��ð Þ½ � in (32) and
(34) is nonzero over the whole space where �� lives. This is
a failure of the normalization stage as described by the
least-squares solution method in Section 3.2, see also [12],
where the normalization stage computes a normalization
matrix A by factoring the estimate eBB of an intermediate
matrix B ¼ AAT that may fail to be nonnegative definite.

Since the cost function C in (31) is strictly nondecreasing
andgrowsunboundedwithk��k (see thedefinitionof �� in (28)),
the minimum of C with respect to �� occurs at the boundary,
i.e., in the limit when � goes to zero. At the boundary, � ¼ 0,
we have �� ¼ 0, see (28), thus, from (31), theminimumvalue of
the cost function C approaches ��T ��. This is much larger than
the small value for theminimumofC thatwe expect to obtain
at the truevalueof thenormalizationparameter vector��. This
indicates that the two-stage algorithm decomposition-normal-
izationdoes notwork and thematrix eRR in (17), (19), and (20) is
not well approximated by a rank 1 matrix.

The matrix eRR is not well approximated by a rank 1 matrix
in two situations. The first arises when the scene contains
dramatic perspective effects. In this case, the rank of the
corresponding noiseless eRR is actually greater than 1 and the
analysis should take this into account by adopting perspec-
tive rather than orthographic projection. The second situation
occurswhen the 3D shape of the object or its 3Dmotion causeeRR ¼ 0 in a noiseless situation. In this case, the noiseless
component eRR has rank 0. From (17), this happens in either of
the twodegenerate cases: The 3Dmotion is such that the third
column of the matrix M is m3 ¼ 0; or a ¼ 0, as when the
3D shape is planar, see (13). If m3 ¼ 0, there is not enough
information in the feature trajectories to recover the
3D structure. In spite of this, the images in the sequence can
still be aligned by computing cMM0 according to (16), for
example, by making

cMM0 ¼ RS0 ST
0 S0

� ��1
: ð45Þ

This confirms analytically what reference [13] found experi-
mentally, namely, that thenormalizationmatrixAused in the
originalmethod of [11], [12] is singular in the degenerate case
where the measurement matrix R should be approximated
by a lower rank matrix, in their case, rank less than 3.

However, if a ¼ 0, although the normalization method in
Section 3.2 fails, the shape of the object is still recovered, in
this case, theoretically, with no error. In fact, the shape is
planar, its plane has been aligned with the reference frame,
z ¼ 0, and x and y are known from this reference frame.

5 RANK 1 WEIGHTED FACTORIZATION

The accuracy of the estimates of the 2D motions, i.e., the
2D displacements of the projections of the feature points,
depends on the spatial variability of the brightness intensity
pattern in the neighborhood of the feature point. The rank 1
factorization method of Section 3 weighs equally the
contribution of each feature, regardless of the accuracy of
the estimate of that feature’s 2D motion. A more robust
estimate of the 3D structure should weigh more heavily the
estimate of the trajectory corresponding to a spatially
“sharp” feature than the estimate of the trajectory corre-
sponding to a feature with a more smooth texture. In this
section, we develop the rank 1 weighted factorization method.
We show that the weighted factorization approach carries no
additional computational cost.

We develop a Maximum Likelihood (ML) estimation
formulation for the rank 1 weighted factorization problem
that accounts for the different noise levels in the 2D motion
estimates. We model the errors in the estimates of the 2D
motion vectors ufn as additive zero mean Gaussian
independent noises with covariance �2

nI2�2. For each
feature, we collect the noises in the motion estimates across
the frames in a vector N n. We assume that the noise vectors
N nf g1�n�N are statistically independent Gauss vectors with
covariances �2

nI, 1 � n � N . The variances �2
n, 1 � n � N ,

are estimated from the spatial gradient of the image
brightness pattern as given in (60) in the appendix.

First, we recenter the coordinate systems taking into
account the different error variances �2

n. The o.c.s. is
centered such that

P
n xn=�

2
n ¼

P
n yn=�

2
n ¼

P
n zn=�

2
n ¼ 0.

Then, the o.c.s is centered at the ML estimate of the
translation along the camera plane

8f : bttf ¼
PN

n¼1 ufn=�
2
nPN

n¼1 1=�
2
n

: ð46Þ

Replacing the translation estimates (46) in (2), redefining the
vector ufn by their recentered versions as

8f; n : ufn :¼ ufn �bttf ; ð47Þ

and using these ufn in the matricesR,M, and S as in (8), we
obtain,

R ¼ MST þN ; ð48Þ

whereN ¼ N 1 � � � NN½ � is the 2ðF � 1Þ �N matrix collecting
the independent Gauss noises in the 2D motion estimates.
We whiten the measurements by inversely weighting each
measurement by its noise variance. Define theN-dimensional
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weight vector w and the 2ðF � 1Þ �N dimensional weight
matrix W by

w ¼ 1

�1
� � � 1

�N

� �T
and W ¼ 1wT ; ð49Þ

where the all ones 2ðF � 1Þ-dimensionalvector1 ¼ 1; . . . ; 1½ �T .
Representing the elementwise product or Hadamard matrix
product of two matrices by �, the whitened measurements
are then written as

RW ¼ R�W ð50Þ
¼ MST

� �
�WþN �W ð51Þ

¼ MST
W þN �W ð52Þ

SW ¼ diag wð ÞS; ð53Þ

where diagðwÞ is the N �N diagonal matrix whose
diagonal entries are the entries of the vector w. The step
from (51) to (52) and the definition of SW in (53) are allowed
because the noises are stationary across the frames, i.e., the
�2
n are frame independent. This is an important assumption

that allows the rank 1 weighted factorization to be
conceptually similar to the rank 1 factorization algorithm,
as we will see next. The ML estimation for the feature
dependent noise generalizes the minimization in (9) to

min
M;S

RW � MST
� �

�W
�� ��

F
¼ min

M;SW

RW �MST
W

�� ��
F
: ð54Þ

The factorization on the left side of (54) doesnot lend itself to a
direct solution.However, the factorization on the right side of
(54), which is a consequence of (53), is conceptually similar to
the one in Section 3: The modified measurement matrix RW

and the first two columns of the matrix SW are known from
(50) and (53), and the motion matrix M is the same matrix
involved in the rank 1 factorization method of Section 3. The
minimization on the right side of (54) is nowaccomplished by
the rank 1 factorization procedure of Section 3 that computes
the factor matrices cMM and cSWSW . The final estimate bSS of the
shape matrix is obtained by inverting (53)

bSS ¼ diag wð Þ�1 cSWSW ¼ diag �1 � � ��Nð Þ�1 cSWSW: ð55Þ

Poelman [13] and Morris and Kanade [23] also consider
reliability weights when estimating the matrices M and S
using the original factorization method of [11], [10], [12]. In
[13], [23], the weight matrixW has a general structure where
each feature has a weight that is allowed to be time (frame)
dependent. The step from (51) to (52) is no longer valid and
the nice structure of the weighted minimization given by the
right side in (54) is lost. These references propose an iterative
solution that, as reported in [13], may fail to converge. This is
not the case with our definition of the weight matrix W. In
fact,whatwe show is that theunconstrainedbilinear problem
given by the right side of (54) has, up to a scale factor, a single,
global minimum when W has all equal rows or all equal
columns. This is not true for agenericmatrixW, forwhich it is
not possible to write the minimization (54) in the form of a
factorization such as done on the right side of (54). For the
general case, the existence of local minima makes using
iterative numerical techniques nontrivial.

6 EXPERIMENTS

We describe experiments that illustrate our methods. The
experiments in Sections 6.1 to 6.4 use synthetic data.

Section 6.1 illustrates the properties of the rank 1 matrix eRR.
Section 6.2 evaluates the sensitivity of the rank 1 factorization
to the observation noise level. Section 6.3 studies how
positioning the camera influences the behavior of the rank 1
factorization algorithm. Section 6.5 compares the computa-
tional cost of the rank 1 and rank 3 factorization methods.
Section 6.4 demonstrates the performance of the weighted
factorization method. The experiments in Section 6.6 recover
the 3D shape and 3Dmotion from real life video clips.

6.1 Rank 1 Factorization: Decoupling the 3D Motion
from the 3D Shape

Object: 3D shape and 3D motion. We generated a rigid
body by placing arbitrarily a set of 10 feature points inside a
cube. The 3D rotational motion is simulated by a smooth
time evolution of the Euler angles, which specify the
orientation of the object coordinate system relative to the
camera coordinate system.

Videosequence.Weusedperspectiveprojection toproject
the features onto the image plane and generate a video
sequence of 50 frames. The distance of the camera to the
centroid of the set of feature points was set to a value high
enough (approximately 10 times the maximum relative
depth) such that orthographic projection is a good approx-
imation to perspective projection. The lines in Fig. 1 are the
trajectories described on the 2D image plane over the
50 frames by the projection of each frame, after adding
Gaussian noise. In other words, these lines represent the
columns of the matrix R: The trajectory for feature n is the
nth column of R—it is the evolution of the image point
R2f�1;n;R2f;n

� �
across the frame index f , see (8). Each line

startswithan“o” (initialpositionof the featureat framef ¼ 1)
and ends with a “?” (final position at frame f = 50).

SFM. The challenge in the SFM problem arises because
the 3D shape and the 3D motion of the rigid object are
observed in a coupled way through the 2D motion on the
image plane of the feature points (the trajectories in Fig. 1).

Rank 1 factorization. The matrix eRR is computed by (17)
from the data matrixR. The left side plot of Fig. 2 represents
the columns of eRR in the same way as Fig. 1 plots R, i.e., it
shows the evolution of eRR2f�1;n; eRR2f;n

� �
across the frame

index f , for each feature n. All trajectories start at ð0; 0Þ, three
trajectories develop to the right while seven expand to the
left. Unlike the trajectories in Fig. 1, we see that all trajectories
of Fig. 2 are scaled versions of the same shape. This is
because the subspace projection of (17) eliminates the
dependence of the trajectories on the x and y coordinates
of the features. The fixed shape of the trajectories does not
depend on the object shape. It is determined uniquely by
the 3D motion of the object; it corresponds to the third
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column of thematrixM, the vectorm3, see (17). This vector is
represented in Fig. 2b. Comparing the trajectories in Fig. 2a
with the plot in Fig. 2b, confirms that the trajectories of the
features are all congruent: The scaling of each trajectory in
matrix eRR depends on the relative depth z of the correspond-
ing feature point, see (19). When this scaling is negative, the
corresponding trajectory is a reflection of the vectorm3 with
respect to the origin.

This experiment illustrates that the subspace projection of
(17)decouples the3Dmotion fromthe3Dshape. In contrast to
the trajectories ofR in Fig. 1, which are spaghetti like, for eRR,
see Fig. 2, the 3D motion influences only the 2D shape of the
trajectories, and the 3D shape influences only the magnitude
of the trajectories.

Singular values. Fig. 3a represents the 10 larger singular
values of the matricesR, marked with “o” and of eRR, marked
with “*”. MatrixR exhibits three significant singular values,
while matrix eRR is well described by only its largest singular
value. To illustrate the influence of the observation noise, we
used a logarithmic scale to represent in Fig. 3b the singular
values of R and eRR for three levels of noise. This plot shows
that, as expected, the higher the noise level is, the more
significant the noise singular values ofR and eRR are. Still, it is
clear, even at these higher noise levels, that eRR has one more
significant singular value, whileR has three.

6.2 Rank 1 versus Rank 3: Sensitivity to Noise

To evaluate the robustness of the rank 1 factorization
algorithm to the noise affecting the 2D motion estimates, we
run Monte-Carlo tests that compare the performances of the
rank 1 factorization method and the original rank 3
factorization of [12] for several noise levels. We performed

two sets of tests. The first set is more appropriate when the
features are selected from the real 2D video. With these
experiments, the 3Dxn- and yn-coordinatesof the featuren are
the uf¼1;n and vf¼1;n coordinates of its projection in the
reference frame, e.g., f ¼ 1. In the remaining frames, f � 1,
the 2D motion estimates of the projection of the feature are
trackedwith errors modeled as additive Gaussian noise with
standard deviation �. The second set of Monte-Carlo tests is
appropriate when the features are preselected from the 3D
object, for example, with visually distinctive marks placed at
the points of interest.With these experiments, the projections
uf¼1;n and vf¼1;n of the featuren in the reference frameare also
synthesized with additive noise.

In our Monte-Carlo tests, we used randomly generated
3D structures with a number N of feature points ranging
from 5 to 100 and a numberF of frames ranging from 5 to 100.
The results of the comparison of the rank 1 and rank 3
factorization methods were similar for all the 3D structures
(3D shapes and 3D motions) tested. We now describe
representative results obtained with a random 3D shape
described byN ¼ 10 feature points and a random 3Dmotion
of the camera over F ¼ 10 frames.

Selecting x and y. Fig. 4a represents the percentage of
normalization failures as a function of the noise standard
deviation. As expected, the higher the noise level is, the
more likely it is for the normalization stages to fail. We see
that the percentage of failures of the rank 1 factorization
(solid line) is smaller than the one of the original rank 3
factorization method (dotted line). Fig. 4b represents the
average Euclidean error of the estimate of the 3D shape,
computed over the runs when the normalization succeeded.
We see that the rank 1 factorization leads to smaller errors
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(solid line) than the rank 3 factorization (dotted line). Figs.
4a and 4b agree with the fact that the rank 1 factorization
approach exploits constraints in the SFM problem that are
not taken into account by the original rank 3 factorization.

Estimating x, y. We run Monte-Carlo tests feeding the
rank 1 factorization algorithm with noisy versions of the x-
and y-coordinates of the features in the reference frame. The
results are in Figs. 5a and 5b. We see that the performance
of the methods is almost indistinguishable when the noise
standard deviation � < 10 and also that the original rank 3
factorization (dotted line) performs better than the rank 1
factorization (solid line) for levels of noise with � > 10. In
all these experiments, the image coordinates are in the
interval ½�200; 200�. Assuming the tracking errors in
practical situations of interest are smaller than 10 pixels
for images of 400� 400 pixels, we conclude, in summary,
that the behaviors of the rank 1 and rank 3 factorization
methods are similar when processing real videos.

6.3 Camera Positioning: Choice of Views

We describe two experiments that illustrate the predictions
of Section 4 with respect to the camera trajectory and the
reference frame viewing angle. We use a set of 50 features
sampled from the surface of the synthetic object shown in
Fig. 6.

Camera trajectory. We fix the reference frame to be f ¼ 1
(corresponding to an elevation3 angle of zero) and created
several trajectories by moving the camera around the object
for f ¼ 2; . . . ; F . The elevation angle � of the views f ¼
2; . . . ; F is kept constant in the course of the camera motion.
The plot in Fig. 7a, computed from the ground truth,
represents the norm km3k of the motion vector m3 as a
function of the angle �. The norm km3k ismaximumwhen the
views are orthogonal to the reference view—note that the
maxima in Fig. 7a occur at � ¼ 	�=2. The minima, km3k ¼ 0,
occur when the views are parallel to the reference
frame—� ¼ 0 or 	�.

As expected from the analysis of Section 4, the norm
km3k is maximum when the views f ¼ 2; . . . ; F are
orthogonal to the reference view, i.e., when � ¼ �=2þ k�,
and km3k ¼ 0 when they are parallel, i.e., when � ¼ k�.

Using these trajectories, we synthesized noisy feature
projections and applied the rank 1 factorization. Fig. 7b plots
the estimation error for the shape and motion subspaces as
functions of the angle �. These errors are the angles4 between
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Fig. 5. The same plots as in Fig. 4 but now obtained when the feature projections onto the reference frame are noisy versions of their x- and

y-coordinates.

Fig. 6. Three-dimensional rigid shape.

3. The 3D orientation of the camera is commonly represented in terms of
the three so-called Euler angles: elevation, compass, and twist, see [26]. The
elevation angle is the angle between the optical axis and the horizontal
plane.

4. The angle between the 1D subspaces spanned by vectors s1 and s2 is
arccosfsT1 s2=ð s1k k s2k kÞg.

Fig. 4. Percentage of failures and 3D reconstruction error as functions of the noise level.



the ground truth subspaces and the subspaces recovered by
the rank 1 factorization. We see that, as predicted by the
analysis in Section 4, the errors are smallerwhen theviewsare
close to being orthogonal (� ¼ 	�=2) to the reference view
and largerwhen they are close to beingparallel (� ¼ k�) to the
reference view.

Reference view. We then fixed the camera trajectory and
used several reference frame viewing angles. Again, to make
the analysis simpler,we chose the optical axis of the reference
frame to be always in a vertical plane, i.e., in a plane
containing the major axis of the object in Fig. 6 and varied its
elevation angle.Wedenote by	 the angle between the optical
axis and themajor axis of the object, thus	 ¼ 0 corresponds to
the top view. The plots in Fig. 8 represent, respectively, the
norm kak of the shape vector a, and the subspace estimation
errors, as functions of the angle 	. Again, these plots confirm
the predictions of Section 4—kak becomes larger, and the
errors become smaller, as the reference view is “more
aligned” with the axis of smallest inertia, i.e., when 	 ¼ k�,
and kak becomes smaller, and the errors larger, as the
reference view is “more orthogonal” to the axis of smallest
inertia. Note that, in practice, in the limiting case of 	 ¼ k�,
the feature points may not be visible due to self-occlusion.

6.4 Rank 1 Weighted Factorization: 2D-Motion
Errors with Different Variances

We now compare the rank 1 weighted factorization and the
rank 1 factorization.

Object: 3D Shape and 3D Motions. The rigid shape is
described by 21 features with coordinates x and y randomly
located inside a square. The depth z is generated with a
sinusoidal shape, seeFig. 10.The3Dtranslation is smoothand
shownby the thick lines inFigs. 11aand11b.The3Drotational

motion is synthesizedby the time evolutionsof the6 entries of
the 3D rotation matrix involved in the orthogonal projection,
see (2). These are shownby the thick lines in Figs. 12a and12b.

Videosequence.Weusedperspectiveprojection toproject
the features onto the imageplane andgenerated a sequenceof
19 frames. The lens focal length parameter was set to a high
value so that orthographic projection is a reasonable approx-
imation. Fig. 9 shows the feature trajectories on the image
plane, after adding Gaussian noise. We group the features in
two sets: the “low noisy” set of 10 features and the “high
noisy” set of 11 features, with noise variances of �2

1 ¼ 1 and
�22 ¼ 5, respectively. As expected, the (estimates) of the
trajectories corresponding to the features of the first subset
are smooth, while the (estimates) of the trajectories corre-
sponding to the features of the second subset have a much
more jagged appearance, see Fig. 9.

Results. We applied both the nonweighted rank 1 factor-
ization of Section 3 and the rank 1 weighted factorization of
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Fig. 7. km3k and subspace estimation errors as functions of the angle � of the camera pose.

Fig. 8. kak and subspace estimation errors as functions of the reference view angle 	.

Fig. 9. Feature trajectories with two levels of observation noise.



Section 5 to the feature trajectories of Fig. 9. The estimates of

the 3D shape and 3D motion are shown in Figs. 10a and 10b,

11aand11b,and12aand12b,superimposedtothetruevalues.

Figs. 10a, 11a, and 12a represent the nonweighted estimates

and Figs. 10b, 11b, and 12b represent the rank 1 weighted

factorization results. We see from Figs. 11 and 12 that the

3D motion estimates obtained through the rank 1 weighted

factorizationmethod ismore accurate than the ones obtained

without taking into account the different noise levels. This is

particularly true for the translationestimates as canbe seenby

comparing Figs. 11a and 11b. The difference is still noticeable

for the estimates of the entries of the 3D rotation matrix, see

Fig. 12; these differences have amuch larger impact originat-

ingmuch larger differences in the feature projections because

theprojections are themultiplicationof the 3Drotationmatrix
by the 3D position of the features, see (2).

The 3D shape estimates represented by the relative
depths are shown in Figs. 10a and 10b. They show that the
weighted estimate of the 3D shape is slightly more accurate
than the nonweighted estimate—note that the depth
estimates (points “.”) are usually at the center of their true
values (circles “o”) in Fig. 10b, while the nonweighted
estimates (points “.”) are usually off-centered with respect
to their true values (circles “o”) in Fig. 10a. A second point
of note is that the accuracy of the weighted estimate of the
relative depth of a given feature reflects the level of the
observation noise for the trajectory of the projection of that
feature—with reference to Fig. 10b, the weighted estimates
of the relative depths of the subset of features observed with
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Fig. 10. Estimates (points “.”) and true values (circles “o”) of the relative depth. (a) Rank 1 nonweighted factorization method. (b) Rank 1 weighted

factorization method.

Fig. 11. Estimates (thin lines) and true value (thick lines) of the translation along the camera plane. (a) Rank 1 nonweighted factorization . (b) Rank 1

weighted factorization method.

Fig. 12. Estimates (thin lines) and true value (thick lines) of the six entries of the 3D rotation matrix involved in the projection. (a) Nonweighted

factorization. (b) Rank 1 weighted factorization.



higher level of noise (the last 11 features in Fig. 10b) are less
accurate than the estimates of the relative depths of the
subset of the first 10 features.

6.5 Computational Cost

We now compare the computational costs of our rank 1
factorization algorithm and the original rank 3 factorization
method of [12]. We counted the MatLab floating point
operations (FLOPS) for both algorithms with F ¼ 50 frames
and a number N of feature points ranging from 5 to 200.
Fig. 13a represents the FLOPS count as a function ofN . From
this plot, we see that the computational cost of the rank 1
factorization (solid line) ismuchsmaller than thatof the rank3
factorization. This was expected since the cost of the rank 3
factorization algorithm is dominated by the computation of
the SVDwhile the rank1 factorization algorithmuses apower
method. We have also implemented an optimized version of
the rank 3 factorization that uses a powermethod to compute
the best rank 3 approximation. The FLOPS count for this
optimized algorithm, represented in Fig. 13b (dashed line), is
also always larger than that of the rank 1 factorization (solid
line) by a factor of approximately 2.

6.6 Real-Life Video Clips

Building sequence. We processed a sequence of 30 frames
showing a building with two planar walls meeting along a
smooth (round) edge. The first frame of the video sequence is
shown in Fig. 14a. The figure also shows, marked as white
squares, the 100 features selected for processing. Fig. 14b
represents the “trackability” of the feature candidates. This
image is obtained from the spatial evolution of the condition
number of the matrix needed to estimate the 2Dmotions, see

[17] for the details. The brighter a point is, themore reliable its
tracking is. We choose the feature points by selecting the
peaks of this image.We assign to each feature the confidence
weight computed as detailed in the appendix, see (60).

We tracked the feature points by matching the intensity
pattern of each feature along the sequence. Using the rank 1
weighted factorization, we recovered the 3D motion and the
relative depth of the feature points from the set of feature
trajectories, as described in Sections 3 and 5. Fig. 15 shows
two perspective views of the reconstructed 3D shape with
the texture mapped on it. The angle between the walls is
clearly seen and the round edge is also well-reconstructed.

CMU’s hotel sequence. Fig. 16 shows frames 1 and 50
from the CMU’s hotel video sequence. On the left image,
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Fig. 13. Computational cost of the rank 1 factorization (solid line) and rank 3 factorization (dashed line). The rank 3 factorization was computed using

the (a) SVD and (b) a power method.

Fig. 14. The building video sequence. (a) First frame. (b) “Trackability” of the feature candidates.

Fig. 15. Three-dimensional shape and texture reconstructed from the

building video sequence.



taken as the reference frame, we marked with white squares
the 50 feature points used by the rank 1 factorization
algorithm. In this video sequence, the camera undergoes a
slow rotation around the object.

To illustrate the relevance of the viewselection,we run our
algorithm with two distinct sets of 12 frames. In the first
experiment, we used consecutive frames, thus all the views
had very similar orientation. The reconstructed 3D shape is
shown in Fig. 17a. In the second experiment, we selected one
frame for each eight video frames, thus the orientation of the
last view was very distinct from the first one (although not
orthogonal). The better quality of the 3D reconstruction
obtained with this sparse view selection, shown in Fig17b,
confirms our theoretical analysis.

7 CONCLUSION

Wedeveloped a new rank 1weighted factorization approach for
the recovery of 3D structure from 2D motion. Our method
reduces theproblemto the factorizationof a rank1matrix that
we compute using the power method, avoiding any expen-
sive singular valuedecomposition of largematrices. The rank
1 factorization method is computationally considerably
simpler than the original rank 3 factorization algorithm, see
Figs. 13a and 13b. We extended the rank 1 factorization
method to the rank 1weighted factorizationmethod to account
for different variances in the errors of the features 2Dmotion
estimates without significant additional computational cost.
We present explicit analytical expressions for the weights
needed by themethod—the inverses of the error variances of
the 2Dmotion estimates.Weprovide extensive analysis of the
algorithm.Thepaperstudies the impactof theactual3Dshape
and 3Dmotion on the performance of the rank 1 factorization

algorithm.We show that the optimal choice for the reference
view is to align the camera optical axis with the object axis of
smallest inertia and that in subsequent views the camera
optical axis should be orthogonal to its position in the
reference view. Experimental results with synthetic data
and real videos illustrate our approach.

APPENDIX

Tracking feature points estimates their 2D motion in the
image plane. This has been widely addressed by the
computer vision community. Usually motion is estimated
by minimizing the sum of the square difference of the
intensities over a spatial region, e.g., [27]. This minimization
is accomplished by using a Gauss-Newton method [28]. We
follow this approach, see [17] for the details. In this appendix,
we present an expression for the variance of the estimation
error in terms of the spatial gradient of the brightness pattern.
This expression is used to compute the weights involved in
the rank 1 weighted factorization method described in
Section 5. Consider a generic image motion model para-
meterized by the p� 1 parameter vector p. The Gauss-
Newton updates for the estimate bpp of p is bpp ¼ p0 þ b
p
p, whereb
p
p is the solution of the linear system

�Rðp0Þ b
p
p ¼ �Rðp0Þ; ð56Þ

�Rðp0Þ ¼
ZZ

R
rpd

T ðp0ÞixyiTxyrpdðp0Þ dx dy;

�Rðp0Þ ¼ �
ZZ

R
itðp0Þrpd

T ðp0Þixy dx dy:
ð57Þ

In (57), itðp0;x; yÞ is the image temporal derivative, the
ixyðx; yÞ ¼ ixðx; yÞ; iyðx; yÞ

� �T
contains the spatial deriva-

tives, and the p� 2 matrix rpd
T ðp0;x; yÞ is, see [27], [28],

rpd
T ðp0;x; yÞ ¼ rpdxðp0; x;yÞ rpdyðp0; x;yÞ

� �
; ð58Þ

where ½dx; dy� is the image displacement. The good
convergence of the Gauss-Newton iterates depends on the
value of the condition number of �Rðp0Þ, thus it is usual to
select features based on this value, see [29], [17]. In [17], we
show that, to first-order approximation, the estimate bpp is
unbiased and the error covariance matrix �p is given by
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Fig. 16. Two frames from the hotel sequence.

Fig. 17. Estimated 3D shape of the hotel. (a) Bad selection of views. (b) Good selection of views.



�p ¼ �2
t�

�1
R ðpaÞ: ð59Þ

Expression (59) provides an inexpensive way to compute
the reliability of the motion estimates. The matrix �RðpaÞ is,
in general, unknown because it depends on the actual value
pa of the unknown p. However, an available approximation
to �RðpaÞ is the matrix �Rðp0Þ used in the iterative
estimation algorithm. We note that, when the motion model
is linear in the motion parameters, as it is the case with the
majority of motion models used in practice, �RðpÞ becomes
independent of the vector p because the derivatives of the
displacement dðpÞ involved in (57) do not depend on the
motion parameters. In this case, the matrix �Rðp0Þ does not
change along the iterative estimation algorithm. The matrix
�Rðp0Þ depends uniquely on the image region R and
�Rðp0Þ will be denoted simply by �R. Since the noise
variance �2

t is considered to be constant, we measure the
error covariance for different regions by comparing the
corresponding matrices ��1

R . For example, the mean square
Euclidean distance between the true vector pa and the
estimated vector bpp, denoted by �2

p, is proportional to the
trace of the matrix ��1

R . The covariance matrix of the
estimation error for the translational motion model is given
by (59) after replacing �R, see [17]. The mean square error
�2
p of the displacement estimate (in the sense of the

Euclidean distance) is given by the trace of the covariance
matrix �p and expressed in terms of image gradients as

�2
p ¼ �2

t

R
R i2y dx dyþ

R
R i2x dx dyR

R i2x dx dy
R
R i2y dx dy�

R
R ixiy dx dy

� �2 : ð60Þ

In Section 5, we use the estimate of the mean square error �2
p

given by (60) to weigh motion estimates corresponding to
different features.
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